Randall Pruim
Calvin University
For our purposes, a domino is a 2 x 1 rectangle:
Here’s U(2):
Here’s U(2):
How much of this table can you fill out?
n | u(n) | U(n) |
---|---|---|
1 | ? | ? |
2 | ? | ? |
3 | ? | ? |
4 | ? | ? |
5 | ? | ? |
n | u(n) | U(n) |
---|---|---|
6 | ? | ? |
7 | ? | ? |
8 | ? | ? |
9 | ? | ? |
10 | ? | ? |
If n is odd, then u(n) = 0.
u(0) | u(1) | u(2) | u(3) | u(4) | u(5) | u(6) | u(7) | u(8) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 3 | 0 | 11 | 0 | ? | 0 | ? |
These get hard fast… We need some help.
To solve this problem, we need
Here’s T(2):
How much of this table can you fill in?
n | t(n) | T(n) |
---|---|---|
1 | ? | ? |
2 | ? | ? |
3 | ? | ? |
4 | ? | ? |
5 | ? | ? |
n | t(n) | T(n) |
---|---|---|
6 | ? | ? |
7 | ? | ? |
8 | ? | ? |
9 | ? | ? |
10 | ? | ? |
n | t(n) |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 5 |
5 | 8 |
n | t(n) |
---|---|
6 | 13 |
7 | 21 |
8 | 34 |
9 | 55 |
10 | 89 |
Wikipedia says:
Arithmetic is a branch of mathematics that consists of the study of numbers, especially the properties of the traditional operations on them – addition, subtraction, multiplication and division.
The primary operations are addition and multiplication.
Domino arithmetic is a branch of mathematics that consists of the study of
numbersdomino tilings, especially the properties of thetraditionaloperations on them – addition, subtraction, multiplication and division.
If A and B are tilings, what are
(Note: there is a little white lie on this slide that we will fix in a moment.)
We would like domino algebra to be
Can you come up with definitions of addition and multiplication so that
Examples:
( + ) ( + ) = ??
( + ) ( + ) = ??
Can you come up with definitions of addition and multiplication so that
Examples:
( + ) ( + ) | = | + + + |
( + ) ( + ) | = | + + + |
= | + 2 + |
Note:
T(n) = T(n-1) + T(n-2)
So t(n) = t(n-1) + t(n-2) [Fibonacci]
Let T be the list of all tilings of rectangles with 2 rows (and any number of columns).
Wait, what is T(0)? Tilings of a 2 \(\times\) 0 rectangle?
T = 1 + T + T
T = 1 + T + T
1 = T - T - T
1 = (1 - - ) T
T = 1 / (1 - - )
Technically, we need a left multiplicative inverse, but let’s stick with this notation.
T = |
| = |
|
T = |
|
= 1 + ( + ) + ( + )2 + ( + )3 + \(\cdots\) |
= 1 + + + + + + + + + \(\cdots\)
If we let x = and y2 = (and let \(x\) and \(y\) commute), then
\[ \begin{align} T &= \frac{1}{1 - (x + y^2)} = \sum_{k=0}^\infty (x + y^2)^k \\ & = \sum_{k,j \ge 0} \binom{k}{j} x^j y^{2(k-j)} \\ & = \sum_{m,j \ge 0} \binom{m+j}{j} x^j y^{2m} \tag{$m = k-j$} \end{align} \]
So the number of tilings with \(j\) and \(m\) is \(\binom{m+j}{j}\).
Example:
\[ \small \begin{align*} t(8) &= \binom{0+4}{0} + \binom{2 + 3}{2} + \binom{4 + 2}{4} + \binom{6 + 1}{6} + \binom{8 + 0}{8} \\ &= 1 + 10 + 15 + 7 + 1 \\ &= 34 \end{align*} \]
Now let \(x = y = z\) (a domino is a domino is a domino – ignore orientation).
\[ \begin{align} T &= 1 + zT + z^2 T \end{align} \]
So
\[ \begin{align} T &= \frac{1}{1 - z - z^2}\\ \end{align} \]
We would like to write
\[ \begin{align} T &= \frac{1}{1 - z - z^2} = \sum_{n=0}^\infty t_n z^n \\ \end{align} \]
as
\[ \begin{align} T &= \frac{1}{1 - z - z^2} = \frac{A}{1 - \alpha z} + \frac{B}{1-\beta z}\\[5mm] & = A[1 + \alpha z + \alpha^2 z^2 + \cdots] + B[1 + \beta z + \beta^2 z^2 + \cdots]\\\\ \end{align} \]
So \(t_n = A \alpha^n + B \beta^n\). We just need to determine \(\alpha\), \(\beta\), \(A\), and \(B\).
\[ \begin{align} T &= \frac{1}{1 - z - z^2} = \frac{A}{1 - \alpha z} + \frac{B}{1-\beta z} = \frac{A(1-\beta z) + B(1-\alpha z)}{(1-\alpha z)(1 - \beta z)} \\[5mm] \end{align} \]
\[ \begin{align} T &= \frac{1}{1 - z - z^2} = \frac{A}{1 - \alpha z} + \frac{B}{1-\beta z} = \frac{A(1-\beta z) + B(1-\alpha z)}{(1-\alpha z)(1 - \beta z)} \\[5mm] \end{align} \]
Denominator:
\[ \begin{align} 1 - z - z^2 & = 1 - (\alpha + \beta)z + \alpha\beta z^2 \\ 1 &= \alpha + \beta\\ -1 & = \alpha \beta \end{align} \]
\[ \begin{align} T &= \frac{1}{1 - z - z^2} = \frac{A}{1 - \alpha z} + \frac{B}{1-\beta z} = \frac{A(1-\beta z) + B(1-\alpha z)}{(1-\alpha z)(1 - \beta z)} \\[5mm] \end{align} \]
Denominator:
\[ \begin{align} 1 - z - z^2 & = 1 - (\alpha + \beta)z + \alpha\beta z^2 \\ 1 &= \alpha + \beta\\ -1 & = \alpha \beta \end{align} \]
Numerator:
\[ \begin{align} 1 &= A (1 -\beta z) + B (1-\alpha z) = (A + B) - (A \beta + B \alpha) z \\ 1 &= A+B \\ 0 &= A\beta + B \alpha \end{align} \]
\[ \begin{align} \alpha + \beta & = 1 & \alpha \beta &= -1 \\ A + B &= 1 & A\beta + B \alpha &= 0 \end{align} \]
\[ \begin{align} \alpha + \beta & = 1 & \alpha \beta &= -1 \\ \end{align} \]
From this we get
\[ \begin{align} -1 &= \alpha \beta = \alpha (1-\alpha) = \alpha - \alpha^2 & 0 & = \alpha^2 - \alpha - 1\\ \alpha &= \frac{1 + \sqrt{5}}{2} \approx 1.618 & \beta &= \frac{1 - \sqrt{5}}{2} \approx -0.618\\ \end{align} \]
Recall that \(t_n = A\alpha^n + B \beta^n\).
Since \(|\beta| < 1\), \(|\beta|^n \searrow 0\) as \(n \to \infty\), so we can basically ignore that part:
\[ \fbox{$t_n \approx A \alpha^n$} \]
\[ \begin{align} \alpha + \beta & = 1 & \alpha \beta &= -1 \\ A + B &= 1 & A\beta + B \alpha &= 0 \\[12mm] \end{align} \]
\[ \begin{align} 0 &= A \beta + (1-A) \alpha \\ 0 &= A \beta + \alpha - A \alpha \\ 0 &= A (\beta -\alpha) + \alpha \\[5mm] A &= \frac{\alpha}{\alpha - \beta} = \frac{\alpha}{\sqrt{5}}\\ B &= 1 - A = \frac{\alpha - \beta}{\alpha - \beta} - \frac{\alpha}{\alpha - \beta} = \frac{-\beta}{\sqrt{5}} \end{align} \]
\[ \begin{align} t_n &= A \alpha^n + B \beta^n = \frac{\alpha^{n+1}}{\sqrt{5}} - \frac{\beta^{n+1}}{\sqrt{5}} \\[5mm] t_n &\approx A \alpha^n = \frac{\alpha^{n+1}}{\sqrt{5}} \\[12mm] \end{align} \]
where
\[ \begin{align*} \alpha &= \frac{1 + \sqrt{5}}{2} \approx 1.618 & \beta &= \frac{1 - \sqrt{5}}{2} \approx -0.618\\ \end{align*} \]
n | t | A part | B part |
---|---|---|---|
0 | 1 | 0.7236068 | 0.276393202 |
1 | 1 | 1.1708204 | -0.170820393 |
2 | 2 | 1.8944272 | 0.105572809 |
3 | 3 | 3.0652476 | -0.065247584 |
4 | 5 | 4.9596748 | 0.040325225 |
5 | 8 | 8.0249224 | -0.024922359 |
6 | 13 | 12.9845971 | 0.015402865 |
7 | 21 | 21.0095195 | -0.009519494 |
8 | 34 | 33.9941166 | 0.005883371 |
9 | 55 | 55.0036361 | -0.003636123 |
10 | 89 | 88.9977528 | 0.002247248 |
U = ??
U = 1 + U + V + Λ
U = 1 + U + V + Λ
V = + U + V
Λ = + U + Λ
We start with 3 equations and 3 unknowns, \(U\), \(V\), and \(\Lambda\).
\[ \begin{align} U &= 1 + z^3 U + z^2 V + z^2 \Lambda \\ V &= z U + z^3 V \\ \Lambda &= z U + z^3 \Lambda \\ \end{align} \]
We can use these to express \(V\) and \(\Lambda\) in terms of \(U\).
\[ \begin{align} V &= (1 - z^3)^{-1} z U\\ \Lambda &= (1 - z^3)^{-1} z U\\ \end{align} \]
Plugging these in, we now have just one equation with one unknown.
\[ \begin{align} U &= 1 + z^3 U + z^2 (1 - z^3)^{-1} z U + z^2 (1 - z^3)^{-1} z U \end{align} \]
\[ \begin{align} U &= 1 + z^3 U + z^2 (1 - z^3)^{-1} z U + z^2 (1 - z^3)^{-1} z U \end{align} \]
\[ \begin{align} 1 &= U - z^3 U - z^2 (1 - z^3)^{-1} z U - z^2 (1 - z^3)^{-1} z U \\ 1 &= \left[1 - z^3 - z^2 (1 - z^3)^{-1} z - z^2 (1 - z^3)^{-1} z\right] U \\ U &= \frac{1}{\left[(1 - z^3) - z^2 (1 - z^3)^{-1} z - z^2 (1 - z^3)^{-1} z\right]} \\ U &= \frac{1 - z^3}{\left[(1 - z^3)^2 - 2z^3\right]} \\ \end{align} \]
\[ \begin{align} U &= \frac{1 - z^3}{\left[(1 - z^3)^2 - 2z^3\right]} = \frac{1 - w}{\left[(1 - w)^2 - 2w\right]} \\ &= \frac{1 - w}{\left[1 -2w + w^2 - 2w\right]} \\ &= \frac{1 - w}{\left[1 - 4w + w^2 \right]} \\ & = \frac{A}{1 - \alpha w} + \frac{B}{1-\beta w}\\ & = A[1 + \alpha w + \alpha^2 w^2 + \cdots] + B[1 + \beta w + \beta^2 w^2 + \cdots]\\\ &= \sum A \alpha^n w^n + B \beta^n w^n \end{align} \]
\[ \begin{align} u_n &= A \alpha^n + B \beta^n \\ & = \mbox{number of ways to tile $3 \times 2n$ with $3n$ dominoes} \end{align} \]
We just need to determine \(\alpha\), \(\beta\), \(A\), and \(B\).
Using algebra similar to the \(2 \times n\) case, we get
\[ \begin{align} \alpha &= 2 + \sqrt{3} & \beta &= 2 - \sqrt{3} \\ A &= \frac{1}{2} + \frac{\sqrt{3}}{6} & B &= \frac{1}{2} - \frac{\sqrt{3}}{6}\\ \end{align} \]
u <- function(n) {
alpha <- 2 + sqrt(3)
beta <- 2 - sqrt(3)
A <- 1/2 + sqrt(3) / 6
B <- 1/2 - sqrt(3) / 6
A * alpha^n + B * beta^n
}
u(0:20)
[1] 1 3 11 41 153
[6] 571 2131 7953 29681 110771
[11] 413403 1542841 5757961 21489003 80198051
[16] 299303201 1117014753 4168755811 15558008491 58063278153
[21] 216695104121
n | t | u | A part | B part |
---|---|---|---|---|
0 | 1 | 1 | 0.7886751 | 0.2113248654051871345 |
1 | 1 | 3 | 2.9433757 | 0.0566243270259356168 |
2 | 2 | 11 | 10.9848276 | 0.0151724426985552496 |
3 | 3 | 41 | 40.9959346 | 0.0040654437682853643 |
4 | 5 | 153 | 152.9989107 | 0.0010893323745862042 |
5 | 8 | 571 | 570.9997081 | 0.0002918857300594508 |
6 | 13 | 2131 | 2130.9999218 | 0.0000782105456515985 |
7 | 21 | 7953 | 7952.9999790 | 0.0000209564525469433 |
8 | 34 | 29681 | 29680.9999944 | 0.0000056152645361746 |
9 | 55 | 110771 | 110770.9999985 | 0.0000015046055977551 |
10 | 89 | 413403 | 413402.9999996 | 0.0000004031578548458 |
11 | 144 | 1542841 | 1542840.9999999 | 0.0000001080258216282 |
12 | 233 | 5757961 | 5757961.0000000 | 0.0000000289454316670 |
13 | 377 | 21489003 | 21489003.0000000 | 0.0000000077559050397 |
14 | 610 | 80198051 | 80198051.0000000 | 0.0000000020781884920 |
15 | 987 | 299303201 | 299303200.9999999 | 0.0000000005568489281 |
16 | 1597 | 1117014753 | 1117014752.9999995 | 0.0000000001492072206 |
17 | 2584 | 4168755811 | 4168755810.9999976 | 0.0000000000399799543 |
18 | 4181 | 15558008491 | 15558008490.9999905 | 0.0000000000107125965 |
19 | 6765 | 58063278153 | 58063278152.9999771 | 0.0000000000028704316 |
20 | 10946 | 216695104121 | 216695104120.9998779 | 0.0000000000007691298 |
https://www2.math.upenn.edu/~wilf/gfologyLinked2.pdf
https://rpruim.github.io/talks/domino-arithmetic/domino-arithmetic-slides.html