Problem Sets Between Test 1 and Test 2

Only turn in problems that are **not** bracketed. Bracketed problems are additional problems you can look at. Round brackets indicate problems that may help you with problems that are assigned; square brackets are additional problems on material that you should know, but you are not required to write up solutions; curly brackets are truly optional and may contain extra nuggets that you will not be required to know but may be interested in.

Additional assignments will be filled in over time.

PS	Due	Source	Problems
8	Tue 3/6	FASt 5	26ab Pearson stat $[26c]$ Pearson stat 31 twins
		$\rm App \ C$	3 factoring $[4-7]$
		Extra Problems	1 LA LA Land
9	Fri 3/9	FASt 5	$egin{array}{cccccccccccccccccccccccccccccccccccc$
10	Tue 3/13	FASt 5	35 equivalent 36 T2D
		FASt C	9 span 10 span 1618 transpose
11	Fri 3/16	FASt 6	2 trebuchet [3] 9 11 expected value and dot product
12	Thu 3/29	FASt 6	1 A vs LA 6 A 8 vector identity 12 A vs LA $16abc$ no intercept

Extra Problems

1 Let $\boldsymbol{x} = \langle 3, 3, 5, 5 \rangle$ Let $\boldsymbol{Y} = \langle Y_1, Y_2, Y_3, Y_4 \rangle \stackrel{\text{iid}}{\sim} \mathsf{Norm}(20, 3)$. Let $\boldsymbol{v}_0 = \langle 1, 1, 1, 1 \rangle, \ \boldsymbol{v}_1 = \langle -1, -1, 1, 1 \rangle, \ \boldsymbol{v}_2 = \langle -1, 1, -1, 1 \rangle, \text{ and } \boldsymbol{v}_3 = \langle -1, 1, 1, -1 \rangle.$

- **a)** Show that $v_i \perp v_j$ whenever $i \neq j$.
- **b)** Determine the unit vectors u_i in the direction of each v_i .
- c) Determine the distribution of $A = u_0 \cdot Y$.
- d) Determine the distribution of $B = u_1 \cdot Y$.
- e) Let $C = \operatorname{proj}(Y \to v_2)$. Determine the distribution of $|C|^2$.
- f) Let $D = \operatorname{proj}(Y \to v_3)$. Let E = C + D. Determine the distribution of $|E|^2$.