Problem Sets Between Test 1 and Test 2

Only turn in problems that are not bracketed. Bracketed problems are additional problems you can look at. Round brackets indicate problems that may help you with problems that are assigned; square brackets are additional problems on material that you should know, but you are not required to write up solutions; curly brackets are truly optional and may contain extra nuggets that you will not be required to know but may be interested in.

Additional assignments will be filled in over time.

PS	Due	Source	Problems
8	Tue 3/6	FASt 5 App C Extra Problems	$\begin{aligned} & \mathbf{2 6 a b} \text { Pearson stat }[26 \mathrm{c}] \text { Pearson stat } 31 \text { twins } \\ & \left.\mathbf{3}_{\text {factoring }} 4-7\right] \\ & \mathbf{1}_{\text {LA LA Land }} \end{aligned}$
9	Fri 3/9	FASt 5	27 which distribution? 28 HWE GOF 30 plants 32 alternative way to compute e_{i} 34 Mendel
10	Tue 3/13	FASt 5 FASt C	$\begin{aligned} & 35_{\text {equivalent }} 36_{\text {т2D }} \\ & 9_{\text {span }} 10_{\text {span }} 16-18 \end{aligned}$
11	Fri 3/16	FASt 6	2 trebuchet [3] 9111 expected value and dot product
12	Thu 3/29	FASt 6	$1_{\text {A vs LA }} 6$ A 8 vector identity 12 avs la 16 abc no intercept

Extra Problems

1 Let $\boldsymbol{x}=\langle 3,3,5,5\rangle$ Let $\boldsymbol{Y}=\left\langle Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\rangle \stackrel{\text { iid }}{\sim} \operatorname{Norm}(20,3)$. Let $\boldsymbol{v}_{0}=\langle 1,1,1,1\rangle, \boldsymbol{v}_{1}=\langle-1,-1,1,1\rangle$, $\boldsymbol{v}_{2}=\langle-1,1,-1,1\rangle$, and $\boldsymbol{v}_{3}=\langle-1,1,1,-1\rangle$.
a) Show that $\boldsymbol{v}_{i} \perp \boldsymbol{v}_{j}$ whenever $i \neq j$.
b) Determine the unit vectors \boldsymbol{u}_{i} in the direction of each \boldsymbol{v}_{i}.
c) Determine the distribution of $A=\boldsymbol{u}_{0} \cdot \boldsymbol{Y}$.
d) Determine the distribution of $B=\boldsymbol{u}_{1} \cdot \boldsymbol{Y}$.
e) Let $\boldsymbol{C}=\operatorname{proj}\left(\boldsymbol{Y} \rightarrow \boldsymbol{v}_{2}\right)$. Determine the distribution of $|\boldsymbol{C}|^{2}$.
f) Let $\boldsymbol{D}=\operatorname{proj}\left(\boldsymbol{Y} \rightarrow \boldsymbol{v}_{3}\right)$. Let $\boldsymbol{E}=\boldsymbol{C}+\boldsymbol{D}$. Determine the distribution of $|\boldsymbol{E}|^{2}$.

