
Introduction to Stan
Math 341

2019-03-22

Stan Example

Describing the model

data {
int<lower=0> N; // N is a non-negative integer
int y[N]; // y is a length-N vector of integers

}
parameters {

real<lower=0,upper=1> theta; // theta is between 0 and 1
}
model {

theta ~ beta (1,1);
y ~ bernoulli(theta);

}

The chunk header for the chunk above looks like this:

{stan output.var = "simple_stan", cache = TRUE}

* `stan`: This is a Stan model, not R code.
* `output.var`: Name of R object for storing the stan DSO.
* `cache = TRUE`: Don't recompile this unless something changes.

Exercises 1 and 2

1. Identify as many differences as you can between this Stan code and the corresponding JAGS code.

2. What is this model? Draw a model diagram for this model. What sort of data must you provide?

Generating posterior samples

simple_stanfit <-
sampling(

simple_stan,
data = list(

N = 50,
y = c(rep(1, 15), rep(0, 35))

),
chains = 3, # default is 4
iter = 1000, # default is 2000
warmup = 200 # default is half of iter

)

Exercise 3

This looks pretty similar to jags(), but it isn’t identical. List as many differences as you can.

1

Running sampling() produces a lot of output (hidden here with results = "hide" in the R chunk header).
Here’s just a portion of what is produced.

SAMPLING FOR MODEL 'stan-126b674f2d49f' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 1.7e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1: Elapsed Time: 0.006157 seconds (Warm-up)
Chain 1: 0.021385 seconds (Sampling)
Chain 1: 0.027542 seconds (Total)
simple_stanfit

Inference for Stan model: 83dbe9f99dbf55ff04494fdddf566a3d.
3 chains, each with iter=1000; warmup=200; thin=1;
post-warmup draws per chain=800, total post-warmup draws=2400.
##
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
theta 0.31 0.00 0.07 0.19 0.26 0.30 0.35 0.45 838 1
lp__ -32.63 0.02 0.74 -34.77 -32.78 -32.34 -32.15 -32.10 1279 1
##
Samples were drawn using NUTS(diag_e) at Fri Mar 22 11:48:36 2019.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Now what?

• Use CalvinBayes::posterior() to create a dataframe with posterior samples. These can be plotted
or explored using ggformula or other familiar tools.

• Use as.matrix() or as.mcmc.list() to create an object that can be used with bayesplot just as we
did when we used JAGS.

gf_dens(~theta, data = posterior(simple_stanfit))
mcmc_areas(as.mcmc.list(simple_stanfit), prob = 0.9, pars = "theta")
mcmc_trace(as.matrix(simple_stanfit))

0

2

4

6

0.2 0.3 0.4 0.5 0.6

theta

de
ns

ity

theta

0.1 0.2 0.3 0.4 0.5 0.6

theta lp__

0 5001000150020002500 0 5001000150020002500
−40

−38

−36

−34

−32

0.2

0.3

0.4

0.5

0.6

2

	Stan Example
	Describing the model
	Generating posterior samples
	Now what?

