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e) not possible

f) 1
y = 1 + ea+bx, so log( 1

y − 1) = log( 1−y
y ) = a+ bx, so g(y) = log( 1−y

y ), f(x) = x, β0 = a, and β1 = b.

g) 100
y = 1 + ea+bx, so log( 100

y − 1) = log( 100−y
y ) = a+ bx, so g(y) = log( 100−y

y ), f(x) = x, β0 = a, and
β1 = b.

8.5 Moving up the ladder will spread the larger values more than the smaller values, resulting in a distribution
that is right skewed.

8.6 At first glance, the two models might appear equally good. In each case the power is a bit below 2 and the
fits look good on top of the raw data.

model <- lm(log(period) ~ log(length), data = Pendulum)
model2 <- nls(period ~ A * length^power, data = Pendulum, start = list(A = 1, power = 2))
f <- makeFun(model)
g <- makeFun(model2)
gf_point(period ~ length, data = Pendulum) %>%
gf_fun(f(x) ~ x, col = 'gray50')

gf_point(period ~ length, data = Pendulum) %>%
gf_fun(g(x) ~ x, col = 'red', lty = 2)

coef(summary(model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7207 0.006361 113.3 2.027e-35
## log(length) 0.4785 0.003938 121.5 3.536e-36

coef(summary(model2))

## Estimate Std. Error t value Pr(>|t|)
## A 2.0470 0.022027 92.93 2.844e-33
## power 0.4827 0.004829 99.96 4.611e-34
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But if we look at the residuals, we see that the linear model is clearly better in this case. The non-linear model
suffers from heteroskedasticity.
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gf_point(resid(model) ~ fitted(model)) %>% gf_smooth()

## ‘geom_smooth()‘ using method = ’loess’

gf_point(resid(model2) ~ fitted(model2)) %>% gf_smooth()

## ‘geom_smooth()‘ using method = ’loess’
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Both residual distributions are reasonably close to normal, but not perfect. In the ordinary least squares model,
the largets few residuals are not as large as we would expect.

gf_qq( ~ resid(model))
gf_qq( ~ resid(model2))
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The residuals in the non-linear model show a clear change in variance as the fitted value increases. This is
counteracted by the logarithmic transformation of the explanatory variable. (In other cases, the non-linaer
model might have the preferred residual distribution.)

The estimated power based on the linear model is 0.478± 0.004.

8.7 Using Tukey’s buldge rules it is pretty easy to land at something like one of the following

gf_point(log(pressure) ~ temperature, data = pressure)
gf_point(log(pressure) ~ log(temperature), data = pressure)
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Neither of these is pefect (although both are much more linear than the original untransformed relationship).
But if you think in degrees Kelvin instead, you might find a much better transformation.

gf_point(log(pressure) ~ (273.15 + temperature), data = pressure)
gf_point(log(pressure) ~ log(273.15 + temperature), data = pressure)
gf_point(log(pressure) ~ 1/(273.15 + temperature), data = pressure)
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Ah, that last one looks quite good. Let’s try that one.
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model <- lm(log(pressure) ~ I(1/(273.15 + temperature)), data = pressure)
mplot(model, 1:2)

## [[1]]

## ‘geom_smooth()‘ using formula ’y ~ x’

##
## [[2]]
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Things still aren’t perfect. There’s a bit of a bow in the residual plot, but the size of the residuals is quite small
relative to the scale of the log-of-pressure values:

range( ~ resid(model))

## [1] -0.07456 0.15171

range( ~ log(pressure), data = pressure)

## [1] -8.517 6.692

Also the residual for the fourth observation is quite a bit larger than the rest.

8.9

a) We can build a confidence interval for the mean by fitting a model with only an intercept term.

grades <- ACTgpa
confint(lm(ACT ~ 1, data = grades))

## 2.5 % 97.5 %
## (Intercept) 24.25 27.9

But this isn’t the only way to do it. Here are some other ways.
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# here's another way to do it; but you don't need to know about it
t.test(grades$ACT)

##
## One Sample t-test
##
## data: grades$ACT
## t = 29, df = 25, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 24.25 27.90
## sample estimates:
## mean of x
## 26.08

# or you can do it by hand
x.bar <- mean( ~ ACT, data = grades); x.bar

## [1] 26.08

n <- nrow(grades); n

## [1] 26

t.star <- qt(.975, df = n-1); t.star

## [1] 2.06

SE <- sd( ~ ACT, data = grades) / sqrt(n); SE

## [1] 0.8874

ME <- t.star * SE; ME

## [1] 1.828

So the CI is 26.077± 1.828. Of course, that is too many digits, we should do some rounding to 26.1± 1.8.

b) confint(lm(GPA ~ 1, data = grades))

## 2.5 % 97.5 %
## (Intercept) 3.185 3.579

# this could also be done the other ways shown above.

c) grades.model <- lm(GPA ~ ACT, data = grades)
f <- makeFun(grades.model)
f(ACT = 25, interval = "confidence")

## fit lwr upr
## 1 3.288 3.167 3.41
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d) f(ACT = 30, interval = "prediction")

## fit lwr upr
## 1 3.723 3.101 4.346

e) gf_point(GPA ~ ACT, data = grades) %>%
gf_lm(interval = "confidence") %>%
gf_lm(interval = "prediction")

gf_point(resid(grades.model) ~ fitted(grades.model)) %>% gf_smooth()

## ‘geom_smooth()‘ using method = ’loess’
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There are no major concerns with the regression model. The residuals look pretty good. (There is perhaps
a bit more variability in GPA for the lower ACT scores and if you said you were worried about that, I
would not argue.)
The prediction intervals are very wide and hardly useful, however. It’s pretty hard to give a precise
estimate for an individual person – there’s just too much variability from preson to person, even among
people with the same ACT score.

8.10 The best of these four models is a model that says drag is proportional to the square of velocity. Given
the design of the experiment, it makes the most sense to fit velocity as a function of drag force. Here are several
ways we could do the fit:

model1 <- lm(velocity^2 ~ force.drag, data = Drag)
model2 <- lm(velocity ~ sqrt(force.drag), data = Drag)
model3 <- lm(log(velocity) ~ log(force.drag), data = Drag)

coef(summary(model1))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06227 0.221931 -0.2806 7.805e-01
## force.drag 0.08400 0.002321 36.1966 3.449e-32

coef(summary(model2))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03586 0.054832 -0.6539 5.169e-01
## sqrt(force.drag) 0.29098 0.006807 42.7478 5.239e-35
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coef(summary(model3))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1623 0.04540 -25.60 2.021e-26
## log(force.drag) 0.4745 0.01241 38.23 4.104e-33

Note that model1, model2, and model3 are not equivalent, but they all tell roughly the same story.

f1 <- makeFun(model1)
f2 <- makeFun(model2)
f3 <- makeFun(model3)
gf_point(velocity ~ force.drag, data = Drag) %>%
gf_fun(sqrt(f1(x)) ~ x, alpha = .4) %>%
gf_fun(f2(x) ~ x, alpha = .4, color = 'red') %>%
gf_fun(f3(x) ~ x, alpha = .4, color = 'brown')
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The fit for these models reveals some potential errors in the design of this experiment. Separating out the data
by the height used to determine velocity suggests that perhaps some of the velocity measurements are not yet
at terminal velocity. In both groups, the velocities for the greatest drag forces are not as fast as the pattern of
the remaining data would lead us to expect.

gf_point(velocity^2 ~ force.drag, data = Drag, color = ~ height)
mplot(model1, w = 1)

## ‘geom_smooth()‘ using formula ’y ~ x’

gf_point(log(velocity) ~ log(force.drag), data = Drag, color = ~ height)
gf_point(velocity ~ force.drag, data = Drag, color = ~ height) %>%
gf_refine(scale_x_log10(), scale_y_log10())

mplot(model3, w = 1)

## ‘geom_smooth()‘ using formula ’y ~ x’
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8.11 See previous problem.

9.1

a) The normal-quantile plot looks pretty good for a sample of this size. The residual plot is perhaps not
quite as “noisy” as we would like (the first few residuals cluster above zero, then next few below), but it
is not terrible either. Ideally we would like to have a larger data set to see whether this pattern persists
or whether things look more noisy as we "fill-in" with more data.

b) A is a measure of background radiation levels, it is the amount of clicks we would get if our test substance
were “at infinity”, i.e., so far away (or beyond some shielding) that it does not affect the Geiger counter.

c) 114± 11

d) 5.5 × 10−6. This gives strong evidence that there is some background radiation being measured by the
Geiger counter.

Last Modified: January 25, 2021 Stat 241 : Pruim



10. INDEX 301

e) k measures the rate at which our test substance is emitting radioactive particles. If k is 0, then our
substance is not radioactive (or at least not being detected by the Geiger counter).

f) 31.5± 1.0

g) 1.1×10−9. We have strong evidence that our substance is decaying and contributing to the Geiger counter
clicks.

h) H0 : k = 29.812; Ha : k 6= 29.812

t <- (31.5 - 29.812) / 1.0; t # test statistic

## [1] 1.688

2 * (1 - pt(t, df = 8)) # p -value

## [1] 0.1299

Conclusion. With a p-value this large, we cannot reject the null hypothesis. Our data are consistent with
the hypothesis that our test substance is the same as the standard substance.

9.2 We can use the product of conditional probabilities:

frac14 · 1

3
· 1

2
· 1

1
=

1

24

Since the probability of guessing the first glass correctly is 1
4 , the probability of guess the second correctly –

assuming the first was correctly guessed – is 1
3 ; the probability of guessing the third correctly – assuming the

first two were correctly guessed – is 1
2 ; and if the first three are guessed correctly, the last is guaranteed to be

correct.

Altnernative solution: The wines can be presented in 4 · 3 · 2 · 1 = 24 different orders, so the probability of
guessing correctly is 1/24.

9.3 Let’s remove the fastest values at each height setting. Although they are the fastest, it appears that
terminal velocity has not yet been reached. At least, these points would fit the overall pattern better if the
velocity were larger.

gf_point( force.drag ~ velocity, data = Drag,
show.legend = FALSE,

color = ~ (velocity < 3.9) & !(velocity > 1 & velocity < 1.5)) %>%
gf_theme(legend.position = "top")

Drag2 <- Drag %>% filter((velocity < 3.9) & !(velocity > 1 & velocity < 1.5))
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drag2.model <- lm(log(force.drag) ~ log(velocity), data = Drag2)
summary(drag2.model)

##
## Call:
## lm(formula = log(force.drag) ~ log(velocity), data = Drag2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3158 -0.1050 0.0179 0.0801 0.2542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3659 0.0272 86.9 <2e-16
## log(velocity) 2.1142 0.0368 57.5 <2e-16
##
## Residual standard error: 0.137 on 28 degrees of freedom
## Multiple R-squared: 0.992,Adjusted R-squared: 0.991
## F-statistic: 3.3e+03 on 1 and 28 DF, p-value: <2e-16

mplot(drag2.model, w = 1:2)

## [[1]]

## ‘geom_smooth()‘ using formula ’y ~ x’

##
## [[2]]
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The model is still not as good as we might like, and it seams like the fit is different for the heavier objects
than for the lighter ones. This could be due to some flaw in the design of the experiment or because drag force
actually behaves differently at low speeds vs. higher speeds. Notice the data suggest an exponent on velocity
that is just a tiny bit larger than 2:

confint(drag2.model)

## 2.5 % 97.5 %
## (Intercept) 2.310 2.422
## log(velocity) 2.039 2.190

So our data (for whichever reason, potentially still due to design issues) is not compatible with the hypothesis
that this exponent should be 2.

9.4

SE <- 1.2 / sqrt(16); SE

## [1] 0.3

t <- (94.32 - 95) / SE; t

## [1] -2.267

p_val <- 2 * pt(t, df = 15); p_val # p-value

## [1] 0.03863

95 will be outside the confidence interval because the p-value is less than 0.05. As a double check, here is the
95% confidence interval.
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t_star <- qt(.975, df = 11); t_star

## [1] 2.201

94.32 + c(-1,1) * t_star * SE

## [1] 93.66 94.98

9.5

a) In this situation it makes sense to do a one-sided test since we will reject the alloy only if the amount of
expansion is to high, not if it is too low.

SE <- 5.9/sqrt(42); SE

## [1] 0.9104

t <- (73.1 - 75) / SE; t

## [1] -2.087

pt(t, df = 41)

## [1] 0.02157

b) Corresponding to a 1-sided test with a significance level of α = 0.01, we could make a 98% confidence
interval (1% in each tail). The upper end of this would be the same as for a 1-sided 99% confidence interval

t_star <- qt(0.99, df = 41)
73.1 + c(-1, 1) * t_star * SE

## [1] 70.9 75.3

c) If all we are interested in is a decision, the two methods are equivalent. I confidence interval might be
easier to explain to someone less familiar with statistics.
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