
Inference for One Mean (using SE)

Stat 145

SE for a mean

The standard error for a sample mean is

SE = σ√
n

and X ≈ Norm(µ, σ√
n

) as long as the sample size is large enough.

We can use these facts to compute confidence intervals and p-values for a mean µ. But there is one problem:
We don’t know σ, so we have to estimate it by taking the standard deviation of our sample (s). This adds
some additional uncertainty (not only do we not know the population mean µ, we also don’t know the
population standard deviation σ). We will use the estimate

SE ≈ s√
n

But when do this the distribution is no longer normal. It is slightly “shorter and more spread out”, so we will
replace the standard normal distribution with a new distribution, called a t distribution.

Actually, there are many t-distributions, and the one we use will depend on the sample size. If we have n
observations in our data set, we will use the t distribution with n− 1 degrees of freedom. The larger
the degrees of freedom, the more the t distribution will resemble a normal distribution.
gf_dist("norm", color = ~ "normal", alpha = 0.5) %>%

gf_dist("t", df = 30, color = ~ "df = 30") %>%
gf_dist("t", df = 10, color = ~ "df = 10") %>%
gf_dist("t", df = 4, color = ~ "df = 4")
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With the t-distribution in place, we can easily compute confidence intervals and p-values.
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Rule of Thumb

The t-distribution approximation is better when

• the sample size is larger
• the population is more like a normal distribution

Our rule of thumb breaks down into advice regarding small, medium, and large sample sizes:

• small (under 10): the t-approximation is fine if the population is normal or very nearly normal. This is
hard to assess from the data (since we have so little), so there must be some other reason to believe
that the population is approximately normal.

• medium (10–30): the t-approximation is fine as long as the population is unimodal and not heavily
skewed and the sample has no clear outliers.

• large (30 or more): the t-approximation is fine for most unimodal populations. The main thing to
watch for here is an extreme outlier in our sample since such an outlier can have a big impact on both
the sample mean and the sample standard deviation.

Again, there are no “bright lines” here. As the sample size gets larger, it is less and less important how much
the population looks like a normal distribution.

Confidence intervals
estimate± critical value · SE

becomes

x± t∗SE

Example: Newts

Biologists studied the rate at which new cells closed a razor cut made in the skin of an anesthetized newt.
The quantified the rate in micrometers per hour (µm/h). For a sample of 18 newts, they found x = 25.67
and s = 8.324. Use this information to compute a 95% confidence interval.

Here’s how we get R to do the work for us.1

t.star <- qt(.975, df = 17); t.star

## [1] 2.109816

t.star <- xct(.95, df = 17); t.star # c for "center"
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## [1] -2.109816 2.109816
1xct() and xcnorm() from the mosaic package are handy, but the usual functions in R only work with probabilities below. It’s

your choice whether you want to use xct() and xcnorm(), but know that qt() and qnorm() are the standard ways of doing this.
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SE = 8.324 / sqrt(18); SE

## [1] 1.961986

ME = t.star * SE; ME

## [1] -4.139428 4.139428

# confidence interval
25.67 + ME

## [1] 21.53057 29.80943

That’s too many digits to report. Since the margin of error is 4.1, it makes sense to report this as (21.5, 29.8)
or 25.7± 4.1. Digits beyond that are not known with any certainty anyway. (As a general rule, standard
errors and generally only reported to 1 or 2 significant digits. But be sure to do your rounding at the very
end of the computation, not along the way.)

With a sample of size 18, the confidence interval should be reasonably accurate as long as the population
distribution is not bimodal or heavily skewed. A plot of the data could be used to make sure there is no
evidence of these sorts of problems.

P-values
For p-values we use the test statistic

t = x− µ0

SE

and compare the result to the t-distribution using pt() (or of xpt()). As always, make sure you subtract
from 1 if you need an upper tail and double if you are doing a 2-sided test.

Example: Sweetness in Colas

Cola manufacturers are concerned with changes in flavor while their beverages are stored. In one test, 10
samples were tasted by trained taste testers before and after storage. The average sweetness lost was 1.02
units with a standard deviation of 1.20 units. Is this enough evidence to conclude that sweetness is being lost
during storage?

Notice that this is a paired design: We have two measurements (sweetness before and after storage) and we
are considering the difference in these two values. The summarized data only mentions the differences, but
the raw data would include both measurements.
SE <- 1.20 / sqrt(10); SE

## [1] 0.3794733

t <- (-1.02 - 0) / SE; t

## [1] -2.687936

# p-value
xpt(t, df = 9)
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## [1] 0.01244025

This data does provide evidence of loss of sweetness since the p-value is quite small. Note: with such a
small sample size, we must have a priori reasons to believe that the population is approximately normally
distributed to believe this p-value is accurate.

Your turn
Compute the critical value assuming you want to construct a confidence interval for a mean in each of these
situations:

1. n = 15, confidence level = 95%

2. n = 25, confidence level = 90%

3. n = 10, confidence level = 98%

In each example below, compute the p-value or confidence interval using the standard error and t-distribution

4. Use the RestaurantTips data set from the Lock5withR package to give a 90% confidence interval for
the mean tip.
library(Lock5withR)
df_stats(~ Tip, data = RestaurantTips)

## response min Q1 median Q3 max mean sd n missing
## 1 Tip 0.25 2.1 3.35 5 15 3.849299 2.420857 157 0

5. The percent tipped is perhaps more interesting than the absolute amount. Compute a 95% confidence
interval for the mean tip percent.

6. Is there evidence that mean tip percent is less than 18% (a common tip guideline)? First answer this
question by looking at your confidence interval, then compute a p-value.

7. Compute a 98% confidence interval for mean resting pulse using the data in BodyTemp50.

8. Why are confidence intervals usually more interesting than p-values in the context of a single mean?
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t.test()

When we have the raw data, we can get R to all the work for us using t.test():
gf_histogram(~Tip, data = RestaurantTips)
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mean(~Tip, data = RestaurantTips)

## [1] 3.849299

t.test(~Tip, data = RestaurantTips)

##
## One Sample t-test
##
## data: Tip
## t = 19.923, df = 156, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.467663 4.230936
## sample estimates:
## mean of x
## 3.849299

What is the alternative?

Note that the default hypothesis test is testing H0 : µ = 0 and is two-sided. To change the hypothesis, use
the mu argument.
t.test(~Tip, data = RestaurantTips, mu = 5)

##
## One Sample t-test
##
## data: Tip
## t = -5.9558, df = 156, p-value = 1.656e-08
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
## 3.467663 4.230936
## sample estimates:
## mean of x
## 3.849299

For a one-sided test, you can set alternative = "less" or alternative = "greater".
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t.test(~Tip, data = RestaurantTips, mu = 5, alternative = "less")

##
## One Sample t-test
##
## data: Tip
## t = -5.9558, df = 156, p-value = 8.278e-09
## alternative hypothesis: true mean is less than 5
## 95 percent confidence interval:
## -Inf 4.168992
## sample estimates:
## mean of x
## 3.849299

Changing the confidence level

We can change the confidence level for our interval using conf.level:
t.test(~Tip, data = RestaurantTips, conf.level = 0.98)

##
## One Sample t-test
##
## data: Tip
## t = 19.923, df = 156, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 98 percent confidence interval:
## 3.395172 4.303426
## sample estimates:
## mean of x
## 3.849299

t.test() is your friend

In practice, we will usually use t.test() when we have the data available to us, but you should know how
to calculate all of the numbers that appear in the output of t.test().

Too much information?

If all you want is the confidence interval or the p-value, we can grab just that part using confint() or
pval():
t.test(~Tip, data = RestaurantTips, mu = 5) %>% confint()

## mean of x lower upper level
## 1 3.849299 3.467663 4.230936 0.95

t.test(~Tip, data = RestaurantTips, mu = 5) %>% pval()

## p.value
## 1.65553e-08

10. Use t.test() to check your answers above.
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Alternative methods: Bootstrap and randomization
In each of the situations above, we can also compute the confidence interval or p-value using bootstrap or
randomization methods.

11. For each confidence interval above, compute a bootstrap confidence interval and compare it to the
interval you computed using SE and the t-distribution.

Randomization distribution = shifted bootstrap distribution

To compute a p-value using randomization, we need a way to simulate data where the null hypothesis is true.
For the one-mean situation, we can do this by shifting the bootstrap distribution so that it is centered in the
correct place. This will give us a distribution with the correct shape and center.

Here is an example:
Tips_boot <- do(5000) * mean(~Tip, data = resample(RestaurantTips))
mean(~mean, data = Tips_boot)

## [1] 3.853067

mean(~Tip, data = RestaurantTips)

## [1] 3.849299

To test H0 : µ = 5, we can shift the distribution by 5 - 3.85 = 1.15.
gf_histogram(~mean, data = Tips_boot) %>%

gf_vline(xintercept = ~ 3.85)
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Tips_rand <- Tips_boot %>% mutate(mean = mean -3.85 + 5) # shift the mean
gf_histogram(~mean, data = Tips_rand) %>%

gf_vline(xintercept = ~ 5)
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12. For each hypothesis test above, redo it using a randomization distribution.
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