
Hypothesis Testing in 4 Steps

Stat 145

Testing Hypotheses in 4 steps
Hypothesis testing follows a 4-step outline.

1. State the null and alternative hypotheses.

We have been practicing this step already. Remember that the null hypothesis will be a specific
statement about the parameter or parameters involved.

2. Compute a test statistic.

The evidence from the data must be summarized as a single number, computed from the data. We call
this number the test statistic.

3. Compute a p-value by comparing the observed test statistic to the null distribution.

The p-value answers the question: How often would we get a test statistic at least an unusual as the
one we observed, if the null hypothesis were true?

One way to estimate the p-value is to simulate random data sets that

• match the way the original data were collected, and

• force the null hypothesis to be true.

We can then compute the test statistic for each of these randomization samples. The distribution of
these statistics is called a randomization distribution or a null distribution.1

4. Interpret the results.

The smaller the p-value, the stronger the evidence against the null hypothesis.

• If the p-value is small enough, we reject the null hypothesis.
• If the p-value is not small enough, we fail to reject the null hypothesis. (In this case our data are

“compatible with” the null hypothesis, but the data may be compatible with other hypotheses as
well.)

Examples
Gender discrimination in promotion decisions?

This example is discussed in Section 5.1 of IMS

Hypotheses

• null hypothesis

– H0: pM − pF = 0 (There is no difference in the proportion of males who are promoted and the
proportion of females who are promoted.)

1Technically, the randomization distribution is just an approximation to the null distribution, and each time you rerun your
randomization, you will get slightly different results. But we will use the terms interchangeably. Later we will learn other ways
to determine or approximate the null distribution that don’t involve randomization.

1

https://openintro-ims.netlify.app/intro-stat-inference.html#caseStudyGenderDiscrimination

• alternative hypothesis – two choices

– Ha: pM − pF 6= 0 (There is a difference in the proportion of males who are promoted and the
proportion of females who are promoted.)

– Ha: pM − pF > 0 (Males are more likely to be promoted than females.)

Our choice for alternative hypothesis will be determined by how we would deal with the case when women
are promoted more often than men in our data. Will we take that as evidence agains the null hypothesis or
not. The first type of alternative is called two-sided or two-tailed and the second is called one-sided or
one-tailed.

The most important thing to know about choosing one-sided or two-sided alternatives: Your choice may
not depend on the data. If you wouldn’t know which side to use without looking at the data, then you
should be doing a two-sided test.

Data The data are presented in a table in the book, but the table seems to be incorrect compared to the
rest of the section. The table should be this:

not promoted promoted
female 10 14
male 3 21

We can create a data set with a row for each case like this:
Promotion <-

bind_rows(
do(21) * tibble(gender = "male", decision = "promoted"),
do(3) * tibble(gender = "male", decision = "not promoted"),
do(14) * tibble(gender = "female", decision = "promoted"),
do(10) * tibble(gender = "female", decision = "not promoted")

)

Here is our table, but oriented the other way around so we can have the response on the left and explanatory
variable on the right to match how we do this in regression. Also, it gives us the column totals that we need
to compute proportions.
tally(decision ~ gender, data = Promotion, margins = TRUE) %>% pander()

female male
not promoted 10 3
promoted 14 21
Total 24 24

tally(decision ~ gender, data = Promotion, margins = TRUE, format = "prop") %>% pander()

Computing the test statistic

female male
not promoted 0.4167 0.125
promoted 0.5833 0.875
Total 1 1

2

test_stat <- diffprop(decision ~ gender, data = Promotion)
test_stat

diffprop
-0.2916667

set.seed(13579)
Promotion_null <- do(1000) * diffprop(decision ~ shuffle(gender), data = Promotion)

gf_histogram(~ diffprop, data = Promotion_null, fill = ~(diffprop <= test_stat))

Computing the p-value

0

50

100

150

200

250

−0.25 0.00 0.25 0.50
diffprop

co
un

t (diffprop <= test_stat)

FALSE

TRUE

prop(~ (diffprop <= test_stat), data = Promotion_null)

prop_TRUE
0.023

Does caffeine make people tap fingers faster?

Hypotheses

• H0: µN − µC = 0
• Ha: µN − µC 6= 0

head(CaffeineTaps)

Taking a look at our data:

Taps Group Caffeine
1 246 Caffeine Yes
2 248 Caffeine Yes
3 250 Caffeine Yes
4 252 Caffeine Yes
5 248 Caffeine Yes
6 250 Caffeine Yes
df_stats(Taps ~ Group, data = CaffeineTaps, mean)

response Group mean
1 Taps Caffeine 248.3
2 Taps No Caffeine 244.8

3

diffmean(Taps ~ Group, data = CaffeineTaps)

diffmean
-3.5
gf_boxplot(Taps ~ Group, data = CaffeineTaps)

242.5

245.0

247.5

250.0

252.5

Caffeine No Caffeine
Group

Ta
ps

horizontal to fit on the page better
gf_boxplot(Group ~ Taps, data = CaffeineTaps)

Caffeine

No Caffeine

242.5 245.0 247.5 250.0 252.5
Taps

G
ro

up

Other plots we could have used:

• jittered scatter plot
gf_jitter(Taps ~ Group, data = CaffeineTaps, height = 0, width = 0.3, color = ~ Group)

242.5

245.0

247.5

250.0

252.5

Caffeine No Caffeine
Group

Ta
ps

Group

Caffeine

No Caffeine

gf_jitter(Group ~ Taps, data = CaffeineTaps, width = 0, height = 0.3, color = ~ Group)

4

Caffeine

No Caffeine

242.5 245.0 247.5 250.0 252.5
Taps

G
ro

up

Group

Caffeine

No Caffeine

If we had more data, we might consider using * violin plots * overlaid density plots * faceted histograms, . . .

Generating the randomization distribution. Key idea: if the null hypothesis is true, then whether a
person had caffeine doesn’t matter. So we can shuffle those labels to get our randomization distribution.
set.seed(1234)
Taps.null <-

do(1000) * diffmean(Taps ~ shuffle(Group), data = CaffeineTaps)

gf_histogram(~ diffmean, data = Taps.null, bins = 20) %>%
gf_vline(xintercept = -3.5)

Determining the p-value

Warning: geom_vline(): Ignoring `mapping` because `xintercept` was provided.

0

50

100

−2.5 0.0 2.5
diffmean

co
un

t

prop(~(diffmean <= -3.5), data = Taps.null)

prop_TRUE
0.007
df_stats(~(diffmean <= -3.5), data = Taps.null, props)

response prop_FALSE prop_TRUE
1 I(diffmean <= -3.5) 0.993 0.007

Again we double this to get our p-value because we are doing a 2-tailed test.
p-value
2 * prop(~(diffmean <= -3.5), data = Taps.null)

prop_TRUE
0.014

That’s a pretty small p-value, so we have evidence against the null hypothesis: It appears the mean number
of taps differs between our two treatment groups. But it doesn’t differ by very much. (We could create a

5

confidence interval for that difference, if we wanted.) A small p-value doesn’t necessarily mean that the
difference is important or meaningful – just that it is bigger than we would expect by chance alone.

Fair Coin?

Data: 57 heads in 100 flips.

1. H0 : p = 0.5; Ha : p 6= 0.5

2. Test statistic: p̂ = 0.57.

0.57 is larger than 0.50, but we need to know whether it might have happened just by chance even though
p = 0.5.

3. To get our p-value, we simulate world where H0 is true using rflip().
set.seed(1234)
Coin.rand <- do(1000) * rflip(100)
head(Coin.rand, 3) # first 3 rows

n heads tails prop
1 100 52 48 0.52
2 100 52 48 0.52
3 100 48 52 0.48

Now we check how unusual our p̂ is by comparing it to our randomization distribution.
gf_histogram(~ prop, data = Coin.rand, binwidth = 0.01) %>%

gf_vline(xintercept = 0.57)

Warning: geom_vline(): Ignoring `mapping` because `xintercept` was provided.

0

25

50

75

0.4 0.5 0.6
prop

co
un

t

tally(~(prop >= 0.57), data = Coin.rand) # counts

(prop >= 0.57)
TRUE FALSE
99 901
prop(~(prop >= 0.57), data = Coin.rand) # proportion

prop_TRUE
0.099

Since we are doing a 2-tailed test, we will double the proportion we just computed to get our p-value.
2 * prop(~(prop >= 0.57), data = Coin.rand) # p-value

prop_TRUE
0.198

6

Do dogs resemble owners?

To test this, researchers had 25 subjects attempt to match dogs with owners based on photos (one person,
two dogs). 16 of 25 people correctly matched the owner to the dog.

The dogs and owners situation is nearly the same as the coin tossing example above. Again our null hypothesis
is

• H0: p = 0.5.

But this time it makes more sense to do a one-tailed test, since we are only looking for evidence that people
do better than guessing. So

• Ha: p > 0.5.

As before we use do() and rflip() to generate our randomization distribution. Notice that we flip only 25
coins per randomization distribution now, since that’s the number of subjects in the original sample.
set.seed(13)
16/25 # this is p-hat

[1] 0.64
Dogs.null <- do(1000) * rflip(25)
head(Dogs.null, 3) # first three rows

n heads tails prop
1 25 13 12 0.52
2 25 5 20 0.20
3 25 14 11 0.56

Now we compare p̂ = 0.64 to the randomization distribution.
gf_histogram(~prop, data = Dogs.null, binwidth = 0.04) %>%

gf_vline(xintercept = 0.64)

Warning: geom_vline(): Ignoring `mapping` because `xintercept` was provided.

0

50

100

150

0.2 0.4 0.6 0.8
prop

co
un

t

prop(~(prop >= 0.64), data = Dogs.null) # p-value

prop_TRUE
0.114

No need to double this time since we are doing a 1-tailed test.

7

	Testing Hypotheses in 4 steps
	Examples
	Gender discrimination in promotion decisions?
	Does caffeine make people tap fingers faster?
	Fair Coin?
	Do dogs resemble owners?

