
2 Types of Grammars
Type 0: no restrictions

Type 1 (context sensitive): only two types of rules allowed

• lAr æ lwr where

– l, r œ V
ú [so they can be anything, including empty]

– A œ N [so A is a single non-terminal]
– w œ V

+ [That is, w ”= ⁄.]
– shorthand: [left][nonterminal][right] æ [left][non-empty][right]

• S æ ⁄

– shorthand: [start] æ [empty string]

– If this rule is used, the the start symbol S may not appear on the right side of any
rule.

Type 2 (context free): only one type of rule allowed

• A æ w where

– A œ N [so A is a single nonterminal symbol]
– w œ V

ú [so no restriction here]

• shorthand: [nonterminal] æ [any string]

Type 3 (regular): Three types of rules allowed

• [nonterminal] æ [terminal] [non terminal] [Example: A æ bC]
• [nonterminal] æ [terminal] [Example: A æ b]
• [start] æ [empty string] [Example: S æ ⁄]

A regular/context free/context sensitive language is a language that can be generated by a regular/context
free/context sensitive grammar.

1. For Grammars 1 - 4 from the previous section, determine whether it is regular, context free, or context
sensitive. (Some grammars will be more than one. All grammars are type 0.)

2. Consider Grammar 8 (G8): alphabet: {A, B, C, x, y, z}, terminals: {a, b, c}, start symbol: A, produc-
tion rules:

• A æ ⁄

• A æ xBC

• BC æ xyC

• B æ x

• B æ AC

• xCx æ zyz

• C æ Ax

• C æ yB

• C æ aBc

• C æ z

a. Why isn’t this a type 1 grammar?
b. Which rules can you eliminate to make this a type 1 grammar? (Eliminate as few as possible.)
c. Which rules can you eliminate to make this a type 2 grammar? (Eliminate as few as possible.)
d. Which rules can you eliminate to make this a type 3 grammar? (Eliminate as few as possible.)

3. True or false: Every grammar of type n is a grammar of type n ≠ 1.

4. True or false: Every language of type n is a language of type n ≠ 1.

4

2.1 Backus-Naur Form (BNF) for Context Free Grammars
Shorthand notation for type 2 grammars.

• nonterminals denoted with ÈÍ.
• æ written as ::=

• All rules with same nonterminal on left written together with the list of possible right sides separated
by |.

Example: If we have production rules A æ Aa, A æ a, and A æ AB, we will write

<A> ::= <A>a | a | <A>

BNF for ALGOL 60 identifier

<identifier> ::= <letter> | <identifier><letter> | <identifier><digit>

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BNF for signed integer

<signed integer> ::= <sign><integer>

<sign> ::= + | -

<integer> ::= <digit> | <digit><integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BNF specification for Java

You can find BNF for various programming languages online. For example: https://users-cs.au.dk/amoeller/
RegAut/JavaBNF.html has a BNF specification for Java.

Exercises

5. Why does BNF notation only work for context free grammars?

6. For each context free grammar we have seen, give its BNF representation.

5

