4 Regular Expressions and Languages

4.1 Operations on Languages

Since languages are sets, we can use set operations like \cup and \cap to create new languages. But there are some additional operations that we will use.

- concatenation of strings: xy is the concetanation of strings x and y (x followed by y)
- concatenation of sets: $AB = \{xy \mid x \in A \land y \in B\}$
- power: $A^0 = \emptyset$; $A^1 = A$; $A^{n+1} = A^n A$. (Power is iterated concatenation.)
- Kleene star: $A^* = \bigcup_{n=0}^{\infty} A^n$
- 1. What strings belong to $\{0, 01\}^2$?
- 2. Which of these strings belong to $\{0, 01\}^*$?
 - a. 01001b. 10110c. 00010
- 3. Which of these strings belong to $\{101, 111, 11\}^*$?
 - a. 1010111b. 1011011
 - c. 1110111
 - d. 11110111

4.2 Regular Expressions

Regular expression are a type of shorthand notation for representing certain types of sets.

4.2.1 Syntax

A regular expression over an input alphabet I is defined recursively.

- \emptyset and λ and regular expressions.
- x is a regular expression for each $i \in I$.
- If A and B are regular expressions, then
 - \mathbf{A}^* is a regular expression
 - $-(\mathbf{A} \cup \mathbf{B})$ is a regular expression
 - -(AB) is a regular expression

4.2.2 Semantics

Each regular expression represents a language as follows.

- \emptyset represents the empty langauge: \emptyset
- λ represents language that contains only the empty string: $\{\lambda\}$
- For each $x \in I$, x represents the language containing only x: $\{x\}$
- If A and B are regular expressions representing languages A and B, then
 - -(AB) represents AB
 - $(\mathbf{A} \cup \mathbf{B}) \text{ represents } A \cup B \qquad [Note: This is often written '(A|B)' in programming languages.]$ $\mathbf{A}^* \text{ represents } A^* \qquad [Note: This is often written as 'A^*' in programming languages.]$

The languages represented by regular expressions are called **regular languages** (how creative).

4. In Rosen 7, the definition of regular expression is missing boldface in a couple places. Find them.

```
The regular expressions over a set I are defined recursively by:
the symbol \emptyset is a regular expression;
the symbol \lambda is a regular expression whenever x \in I;
the symbols (AB), (A \cup B), and A<sup>*</sup> are regular expressions whenever A
and B are regular expressions.
```

- 5. What is the difference between 1 and 1? between λ and λ ? between \emptyset and \emptyset ?
- 6. Describe in words the languages represented by each of these regular expressions:

a. 10^* b. $(10)^*$ c. $0 \cup 01$ d. $0^* \cup 01$ e. $0(0 \cup 1)^*$ f. $(0 \cup 01)^*$

- 7. Can each of the languages above be recognized by an NFA? a DFA?
- 8. What would we need to do to show that every regualar language can be recognized by an NFA? Give it a try and see how far you get. Which parts are easy? Which are trickier? Why?