## 3 Finite State Automata

A finite state automaton consists of the following:

- a finite set of states: S
- a finite input alphabet: I
- a start state:  $s_0 \in S$ .
- a set of accepting states:  $F \subseteq S$
- a transition function:  $f: S \times I \to S$

**Example**  $(M_0)$  states:  $\{A, B, C, D\}$ ; input alphabet:  $\{0, 1\}$ ; start state: A; accepting states:  $\{A, D\}$ ; transition function described in table below

| $\overline{M_0}$ |   |   |   |   |   |   |   |   |
|------------------|---|---|---|---|---|---|---|---|
| state            | А | А | В | В | С | С | D | D |
| letter           | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| f                | А | В | А | С | А | А | С | В |

## 3.1 Graph Representation

- 1. It is often easier to visualize what is going on if we represent an automaton with a graph. Create a labeled, directed graph with the following properties:
  - There is a vertex for each state, labeled with the state. (Draw this as a circle with the state inside the circle.
  - There is an edge from state s to state t labeled with letter x if and only if f(s, x) = t
  - Accepting states are circled a second time. (We could use shape or color or something else to make it clear which states are accepting states, but double circling is easy.)
  - An extra arrow (not coming from any state) points to the start state. This isn't really an edge in the graph, just an extra bit of labeling.

## 3.2 Extended transition function

We can extend the transition function to  $f^*: S \times I^* \to S$  with the following recursive definition:

- $f^*(s, \lambda) = s$  for any state s
- $f^*(s, xa) = f(f^*(s, x), a)$  for any  $x \in I^*$  and  $a \in I$
- 2. Use this definition to determine the following.
  - a.  $f^*(B, \lambda)$ b.  $f^*(B, 0)$ c.  $f^*(B, 010)$ d.  $f^*(A, 101)$ e.  $f^*(A, 1011)$

## 3.3 Language Recognition

For any automaton M with transition function f, start state s and accepting states F, the language recognized by M (written L(M)) is defined as follows:

$$x \in L(M) \iff f^*(s, x) \in F$$

3. For each string x below, compute  $f^*(A, x)$ . Which of these strings are in  $L(M_0)$ ? (We will say that such strings are **accepted by**  $M_0$ .)

- a.  $\lambda$
- b. 0
- c. 1
- $d. \ 010$
- e. 1011

Here are three automata:



- 4. For each of the machines  $M_1, M_2, M_3$ , compute
  - a.  $f^*(s_0, 10)$ b.  $f^*(s_0, 1011)$ c.  $f^*(s_1, 1011)$
- 5. For each of the machines  $M_1, M_2, M_3$ , determine the language recognized.
- 6. Create automata that recognize each of the following languages.
  - a. The set of bitstrings that begin with two 0's
  - b. The set of bitstrings that contain exactly two 0's
  - c. The set of bitstrings that contain at least two 0's
  - d. The set of bitstrings that contain two consecutive 0's (anywhere in the string)
  - e. The set of bitstrings that do not contain two consecutive 0's anywhere
  - f. The set of bitstrings that end with two 0's