Random Variables

Stat 241

Discrete Random Variable

A random variable *X* is a **discrete random variable** if the range of *X* is finite or an infinite sequence of values. A discrete random variable can be characterized by a function called a **probability mass function (pmf)** which specifies the probability for each possible numerical value of the random variable.

$$
p(x) = P(X = x)
$$

This function can be specified with a formula or in a table of probabilities. Given the pmf we can calculate the probability any event by adding the probabilities for all of the these values in the event.

Example 1. Toss a fair coin 5 times. Let $X =$ number of heads produced.

- a. Create a probability table for *X*.
- b. What is $P(X \text{ is even})$?
- c. What is $P(X \geq 2)$?

Binomial Random Variables

This example is an instance of an important kind of discrete random variabl called a **binomial random variable**. Binomial random variables arise in situations which have the following properties.

- 1. The random process consists of a **predetermined number of trials** (usually denoted *n*).
- 2. Each trial has **two outcomes** (generically called success and failure).
- 3. The **probability** of success **is the same for each trial** (often denoted *p*).
- 4. Each trial is **independent** of the others.
- 5. The random variable counts the **number of successes** in the *n* trials.

Such a variable is dennoted by $X \sim \text{Binom}(n, p)$.

There is a handy formula for the pmf of a $Binom(n, p)$ random variable:

$$
p(x) = P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}
$$

where $\binom{n}{x} = \frac{n!}{x!(n-x)!}$. $\binom{n}{x}$ is read "n choose x" and counts the number of ways to pick a set of *x* items from a collection of size *n*. This can be computed in R using the choose() function.

choose(5, 2)

[1] 10

factorial(5) **/** (**factorial**(2) *** factorial**(3))

[1] 10

Example 2. If we roll a fair die 10 times, what is the probability of getting 2 or more sixes?

Example 3. Two cards are dealt from an ordinary deck of playing cards. Let $X =$ number of aces dealt.

- a. Create a probability table for *X*.
- b. Is *X* a binomial random variable? If so, what are *n* and *p*? If not, why not?
- c. What is $P(X \geq 1)$?

Example 4. A fair coin is tossed until a head is produced. Let $X =$ number of tosses.

- a. Create a probability table for *X*.
- b. Can you give a formula for the pmf for *X*?
- c. Can you show that the sum of all the probabilities is 1?
- d. What is $P(X \geq 4)$?
- e. What is the probability it takes an even number of tosses to production first head? (P(*X* is even)

Continuous Random Variables

A **continuous random variable** is a random variable whose range is an interval of real numbers.

Examples

- Randomly select an adult male: Let $X = (exact)$ height in inches
- Randomly select a washer produced by a particular machine. Let $X = (exact)$ diameter in mm.
- Randomly select a battery and use it to power a device. Let $X = (exact)$ time until battery can no longer power device.

Density histograms and density plots of data

Let's consider the heights of the adult children in the Galton data set. Here is a **density histogram**.

```
gf_dhistogram( ~ height, data = Galton)
```


The density scale is chosen so that

Now let's look at a density plot.

```
gf_dhistogram( ~ height, data = Galton) %>%
gf_dens( ~ height, data = Galton, size = 1.2)
```


This provides a "smooth" version of the histogram and also has the property that

Density Curves and Density Functions

A continuous random variable is described by a **probability density function (pdf)**. The plot of a pdf will look just like curve in a density plot.

Probability density functions always have two important properties:

1.

2.

We determine probabilities from a pdf but taking the area under the curve over the region corresponding to our event (ie, by integration).

$$
\mathcal{P}(a \le X \le b) = \int_{a}^{b} f(x) \, dx
$$

Example 5. Let *X* be a number randomly chosen from the interval $[0, 2]$ in such a way that all numbers are equally likely. We call $[0,2]$ the **support** of *X* is $[0,2]$.

Since no value of X is more likely to be selected than any other value, the density function $f(x)$ must be a constant on [0,2].

- a. What is the constant value?
- b. What is $P(X = 1)$?
- c. What is $P(0 \leq X \leq 1)$?
- d. Waht is $P(1 \le X \le 3/2)$?
- e. What is $P(1 \leq X \leq 3)$?

A random variable *X* whose pdf is constant (where it is non-zero) is said to have a **uniform distribution**. We will denote this as $X \sim \text{Unif}(a, b)$, where a and b are the upper and lower limits of the support.

Example 6. Let $f(x) = x/2$ for $x \in (0,2)$ (and 0 elsewhere). We can write this as $f(x) = x/2 \cdot [x \in (0,2)]$ or $f(x) = x/2$ on $(0, 2)$.

- a. Verify that $f(x)$ is a probability density function.
- b. Compute $P(1 \le X \le 3/2)$.
- c. Compute $P(1 \le X \le 4)$.

The Cumulative Distribution Function (cdf) for a continuous random variable The **cdf** for *X* is defined by

$$
F(x) = P(X \le x)
$$

Example 7. Let *X* have a uniform distribution on [0*,* 4].

a. pdf: $f(x) =$

b. cdf: $F(x) =$

Example 8. Let *X* be the random variable whose pdf is $f(x) = x/2 \cdot [x \in (0, 2)]$. Find the cdf for *X*.

Using the cdf to compute probabilities

If $F(x)$ is the cdf for the random variable *X*, then $P(a \le X \le b) = _$

Example 9. Let $F(x) = x^2$ on [0, 1]

- a. What is $F(x)$ when $x < 0$?
- b. What is $F(x)$ when $x > 0$?
- c. What is $P(X \leq 1/2)$?
- d. What is $P(1/2 \le X \le 3/4)$?
- e. What is $P(-2 \le X \le 1/2)$?
- f. What is the pdf for *X*?

Example 10. Let $f(x) = e^{-x}$ on $(0, \infty)$ (and 0 elsewhere).

- a. Show that *f* is a pdf.
- b. Let *X* be the corresponding random variable. What is $P(X > 2)$?
- c. What is the cdf for *X*?
- d. Use the cdf to find $P(X < 1)$.

More Practice

1. Parts coming off an assembly line have a 1% chance of being defective. If 3 parts are randomly chosen from this line and X is the number of defective parts.

- a. Compute the probability function $p(x)$ for X.
- b. What is the probability that at least one of the three is defective?

2. Parts coming off an assembly line have a 1% chance of being defective. All of the parts coming off the line are inspected. Let *X* be the number parts inspected up to and including the first defective part.

- a. Is *X* continuous or discrete?
- b. What is the support of *X*?
- c. Find the probability mass function $p(x)$ for *X*.
- d. What is the probability that the first defective part is the 100th part?
- **3.** A biased coin has a 40% chance of producing a head. If it is tossed 10 times,
	- a. What is the probability of getting exactly 3 heads?
	- b. What is the probability of getting 3 or more heads. (This can be calculated in two different ways. The easier way uses the complement rule.)
- **4.** a. Find the value of *C* for which the function $f(x) = Cx^2 \cdot [x \in (0,2)]$ is a pdf.
	- b. Use the pdf to find $P(0 \le X \le 1)$ and $P(1 \le X \le 5)$.
	- c. Use the pdf to compute the cumulative distribution function $F(x)$.
- **5.** a. Find the value of *C* for which the function $f(x) = \frac{C}{x^2} \cdot [x \ge 1]$ is a pdf.
	- b. What is $P(X \leq 2)$?
	- c. What is $P(X > 3)$?
	- d. Find the cumulative distribution function $F(x)$.
	- e. Use the cumulative distribution function to find $P(2 \le X \le 5)$.