Calculating Probability Theoretically

Stat 241

Theoretical Probability calculations combine

1.
2.
3.

Probability by Axioms and Rules

Three Axioms

Let S be a sample space for a random experiment and A and B be events (sets of outcomes).

- The events A and B are mutually exclusive (ME) if A and B have no outcomes in common; i.e., A and B cannot occur simultaneously.
- The event "A or B" is the event consisting of all outcomes that are either in A or in B (possibly both).
- The event "A and B" is the event that consists of all outcomes that are in both A and B.
- The event "not A" consists of all outcomes not in the event A.

1. $0 \leq P(A) \leq 1$.
2. $P(S)=1$.
3. (Sum Rule) If A and B are mutually exclusive then $P(A$ or $B)=P(A)+P(B)$.

In fact, this works for multple events: $P\left(A_{1}\right.$ or A_{2} or $\left.A_{3} \cdots A_{k}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\cdots P\left(A_{k}\right)$ as long as all the events are mutuall exclusive (at most one can happen on any given trial).

Derived Rules

4. (Complement Rule) $P(\operatorname{not} A)=1-P(A)$.
5. (General Sum Rule) $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
6. (Equally Likely Rule) If the sample space consists of n equally likely outcomes, then

$$
P(A)=\frac{|A|}{|S|}=\frac{\text { number of outcomes in } A}{\text { number of outcomes in } S}
$$

Examples

1. Carol has applied for admission to Harvard and to Princeton. The probability that Harvard accepts her is .3 , the probability that Princeton accepts her is .4 , and the probability that both accept her is .2 . What is the probability that neither accept her?
2. Toss a fair die.

- $S=$
- $\mathrm{P}($ die comes up prime $)=$
- $\mathrm{P}($ die comes up odd $)=$

3. Toss a fair coin 3 times.

- $S=$
- If $X=$ number of heads, then the probability table for X is

4. Toss a pair of dice. Let $X=$ the sum of the two numbers rolled, then

- $S=$
- The probability table for X is
- Compare with the simulated result

2	3	4	5	6	7	8	9	10	11	12
0.03	0.053	0.084	0.108	0.134	0.163	0.146	0.112	0.088	0.056	0.027

- $P(X \geq 10)=$
- $P(X<10)=$
- $P(6$ or doubles $)=$

