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0. Where do numbers come from? 7

0
Where do numbers come from?

Scientists and engineers work with numbers constantly. Physical constants, values for the specific heat index or
measures of strength or flexibility of some material, resistance of some component in an electrical device, etc.,
etc. Most of these numbers come from some process that generated data and led to a calculation that produced
the number. Like this one . . .

Thought experiment – How many dimes?

Here’s a thought experiment for you. Suppose a middle school class has collected a large number of dimes
(10-cent coinds) in a sack. Before bringing the money to the bank, they would like to estimate how many dimes
they have (using tools and methods that 6th graders have at their disposal). You’ve been brought in to consult
with them about how they should do this.

1. What method would you suggest? Why?

2. What other methods would be possible? What makes your proposed method better?

3. For your favorite method and others, identify factors that lead the resulting estimate to be different from
the exact number of dimes in the sack.

Some important terms

estimand/measureand The number we want to know. The “truth." In our example this is the number of

Math 241 : Pruim Last Modified: January 23, 2021



8 0. Where do numbers come from?

dimes in the bag. Typically this will be a number that describes some process or population, and typically
it will be impossible to know the value exactly.

estimate/measurement The value calculated from our data. This may be as simple as recording a value
reported by some device, or it may involve recording multiple values, perhaps of multiple variables, maybe
at multiple times, and making some computations with that data.

error The difference between the estimate and the estimand. Because we don’t know the estimand exactly,
we can’t know the error exactly either. But thinking about what the error could be is a big part of
understanding the statistical properties of an estimation method. Generally, we want methods where
errors tend to be small (so our estimate is “likely to be close to the estimand") and centered around 0 (so
we’re “right on average").

systematic (component of) error a component of error that makes our estimate biased – in other words,
leads the estimate to be either an over- or under-estimate. For example, neglecting the weight of the sack
would lead us to overestimate the weight of the dimes, and therefore overestimate the number of dimes.
Another way to express this idea is “a tendency to be off in a certain direction."

random (component of) error a component of error that leads to variability in estimates (but not a partic-
ular tendency toward over- or under-estimation). If random errors are larger, there will be more variability
in estimates, so we will be less confident that the estimand and estimate are close together – although
some estimates may still be very close to the estimand, just by chance.

One of the big questions in statistics is this: What does our estimate tell us about the estimand? We will
eventually learn techniques for quantifying (and attempting to reduce) the effects of error in our measurements.

Last Modified: January 23, 2021 Stat 241 : Pruim



1. Graphical Summaries of Data 9

1
Graphical Summaries of Data

1.1 Getting Started With RStudio

RStudio is an integrated development environment (IDE) for R, a freely available language and environment for
statistical computing and graphics. Both are freely available for Mac, PC, and Linux.

In addition to running RStudio on your local machine, you have the option of accessing an RStudio server via a
web browser. (For best results, avoid Internet Explorer.)

1.1.1 Using R as a calculator

Notice that RStudio divides its world into four panels. Several of the panels are further subdivided into multiple
tabs. The console panel is where we type commands that R will execute.

R can be used as a calculator. Try typing the following commands in the console panel.

5 + 3

## [1] 8

15.3 * 23.4

## [1] 358

sqrt(16)

## [1] 4

You can save values to named variables for later reuse

product = 15.3 * 23.4 # save result
product # show the result

## [1] 358

Math 241 : Pruim Last Modified: January 23, 2021



10 1. Graphical Summaries of Data

Figure 1.1: Welcome to RStudio.

product <- 15.3 * 23.4 # <- is assignment operator, same as =
product

## [1] 358

15.3 * 23.4 -> newproduct # -> assigns to the right
newproduct

## [1] 358

.5 * product # half of the product

## [1] 179

log(product) # (natural) log of the product

## [1] 5.881

log10(product) # base 10 log of the product

## [1] 2.554

log(product, base = 2) # base 2 log of the product

## [1] 8.484

Last Modified: January 23, 2021 Stat 241 : Pruim



1. Graphical Summaries of Data 11

The semi-colon can be used to place multiple commands on one line. One frequent use of this is to save and
print a value all in one go:

15.3 * 23.4 -> product; product # save result and show it

## [1] 358

1.1.2 Loading packages

R is divided up into packages. A few of these are loaded every time you run R, but most have to be selected.
This way you only have as much of R as you need.

In the Packages tab, check the boxes next to the following packages to load them:

• mosaic (a package from Project MOSAIC)

• DAAG (a package that goes with the book Data Analysis and Graphic)

You an also load packages by typing, for example

library(DAAG) # loads the DAAG package if it is not already loaded

1.1.3 Four Things to Know About R

1. R is case-sensitive

If you mis-capitalize something in R, it won’t do what you want.

2. Functions in R use the following syntax:

functionname( argument1, argument2, ... )

• The arguments are always surrounded by (round) parentheses and separated by commas.
Some functions (like data()) have no required arguments, but you still need the parentheses.

• If you type a function name without the parentheses, you will see the code for that function – which
probably isn’t what you want at this point.

3. TAB completion and arrows can improve typing speed and accuracy.

If you begin a command and hit the TAB key, R will show you a list of possible ways to complete the
command. If you hit TAB after the opening parenthesis of a function, it will show you the list of arguments
it expects. The up and down arrows can be used to retrieve past commands.

4. Hit ESCAPE to break out of a mess.

If you get into some sort of mess typing (usually indicated by extra ’+’ signs along the left edge, indicating
that R is waiting for more input – perhaps because you have some sort of error in what has gone before),
you can hit the escape key to get back to a clean prompt.

Math 241 : Pruim Last Modified: January 23, 2021



12 1. Graphical Summaries of Data

1.2 Data in R

1.2.1 Data Frames

Most often, data sets in R are stored in a structure called a data frame. A data frame is designed to hold
“rectangular data". The people or things being measured or observed are called observational units (or
subjects or cases when they are people). Each observational unit is represented by one row. The different pieces
of information recorded for each observational unit are stored in separate columns, called variables.

1.2.2 Data in Packages

There are a number of data sets built into R and many more that come in various add on packages.

You can see a list of data sets in a particular package like this:

library(mosaicData) # load the package
data(package = "mosaicData") # see what data sets are in it

You can find a longer list of all data sets available in any loaded package using

data()

1.2.3 The HELPrct data set

The HELPrct data frame from the mosaic package contains data from the Health Evaluation and Linkage to
Primary Care randomized clinical trial. You can find out more about the study and the data in this data frame
by typing

?HELPrct

Among other things, this will tell us something about the subjects (observational units) in this study:

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin or cocaine
as their first or second drug of choice, resided in proximity to the primary care clinic to which
they would be referred or were homeless. Patients with established primary care relationships they
planned to continue, significant dementia, specific plans to leave the Boston area that would prevent
research participation, failure to provide contact information for tracking purposes, or pregnancy
were excluded.

Subjects were interviewed at baseline during their detoxification stay and follow-up interviews were
undertaken every 6 months for 2 years.

It is often handy to look at the first few rows of a data frame. It will show you the names of the variables and
the kind of data in them:

head(HELPrct)

## age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b
## 1 37 1 yes 49 3 177 225 0 NA 0 male yes
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1. Graphical Summaries of Data 13

## 2 37 1 yes 30 22 2 NA 0 NA 0 male yes
## 3 26 1 yes 39 0 3 365 20 NA 0 male no
## 4 39 1 yes 15 2 189 343 0 1 1 female no
## 5 32 1 yes 39 12 2 57 0 1 0 male no
## 6 47 1 yes 6 1 31 365 0 NA 1 female no
## homeless i1 i2 id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk
## 1 housed 13 26 1 39 1 yes 25.112 58.41 0 black no 4
## 2 homeless 56 62 2 43 NA <NA> 26.670 36.04 1 white no 7
## 3 housed 0 0 3 41 0 no 6.763 74.81 13 black no 2
## 4 housed 5 5 4 28 0 no 43.968 61.93 11 white yes 4
## 5 homeless 10 13 5 38 1 yes 21.676 37.35 10 black no 6
## 6 housed 4 4 6 29 0 no 55.509 46.48 5 black no 5
## substance treat avg_drinks max_drinks hospitalizations
## 1 cocaine yes 13 26 3
## 2 alcohol yes 56 62 22
## 3 heroin no 0 0 0
## 4 heroin no 5 5 2
## 5 cocaine no 10 13 12
## 6 cocaine yes 4 4 1

When there are a lot of variable, this format is hard to read. The glimps() or inspect() functions proved
some other options.

glimpse(HELPrct)

## Rows: 453
## Columns: 30
## $ age <int> 37, 37, 26, 39, 32, 47, 49, 28, 50, 39, 34, 58, 58, 60, 36, ...
## $ anysubstatus <int> 1, 1, 1, 1, 1, 1, NA, 1, 1, 1, NA, 0, 1, 1, 1, 1, 1, 0, 0, 1...
## $ anysub <fct> yes, yes, yes, yes, yes, yes, NA, yes, yes, yes, NA, no, yes...
## $ cesd <int> 49, 30, 39, 15, 39, 6, 52, 32, 50, 46, 46, 49, 22, 36, 43, 3...
## $ d1 <int> 3, 22, 0, 2, 12, 1, 14, 1, 14, 4, 0, 3, 5, 10, 2, 6, 1, 2, 0...
## $ daysanysub <int> 177, 2, 3, 189, 2, 31, NA, 47, 31, 115, NA, 192, 6, 6, 0, 27...
## $ dayslink <int> 225, NA, 365, 343, 57, 365, 334, 365, 365, 382, 365, 365, 36...
## $ drugrisk <int> 0, 0, 20, 0, 0, 0, 0, 7, 18, 20, 8, 0, 0, 0, 0, 0, 0, 0, 10,...
## $ e2b <int> NA, NA, NA, 1, 1, NA, 1, 8, 7, 3, NA, NA, NA, 1, NA, 2, NA, ...
## $ female <int> 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, ...
## $ sex <fct> male, male, male, female, male, female, female, male, female...
## $ g1b <fct> yes, yes, no, no, no, no, yes, yes, no, no, no, no, no, no, ...
## $ homeless <fct> housed, homeless, housed, housed, homeless, housed, housed, ...
## $ i1 <int> 13, 56, 0, 5, 10, 4, 13, 12, 71, 20, 0, 13, 20, 13, 51, 0, 0...
## $ i2 <int> 26, 62, 0, 5, 13, 4, 20, 24, 129, 27, 0, 13, 31, 20, 51, 0, ...
## $ id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 1...
## $ indtot <int> 39, 43, 41, 28, 38, 29, 38, 44, 44, 44, 34, 11, 40, 41, 38, ...
## $ linkstatus <int> 1, NA, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,...
## $ link <fct> yes, NA, no, no, yes, no, no, no, no, no, no, no, no, yes, n...
## $ mcs <dbl> 25.112, 26.670, 6.763, 43.968, 21.676, 55.509, 21.793, 9.161...
## $ pcs <dbl> 58.41, 36.04, 74.81, 61.93, 37.35, 46.48, 24.52, 65.14, 38.2...
## $ pss_fr <int> 0, 1, 13, 11, 10, 5, 1, 4, 5, 0, 0, 13, 13, 1, 1, 7, 9, 1, 1...
## $ racegrp <fct> black, white, black, white, black, black, black, white, whit...
## $ satreat <fct> no, no, no, yes, no, no, yes, yes, no, yes, no, yes, yes, no...
## $ sexrisk <int> 4, 7, 2, 4, 6, 5, 8, 6, 8, 0, 2, 0, 1, 4, 8, 3, 4, 4, 3, 7, ...
## $ substance <fct> cocaine, alcohol, heroin, heroin, cocaine, cocaine, cocaine,...
## $ treat <fct> yes, yes, no, no, no, yes, no, yes, no, yes, yes, no, no, ye...
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14 1. Graphical Summaries of Data

## $ avg_drinks <int> 13, 56, 0, 5, 10, 4, 13, 12, 71, 20, 0, 13, 20, 13, 51, 0, 0...
## $ max_drinks <int> 26, 62, 0, 5, 13, 4, 20, 24, 129, 27, 0, 13, 31, 20, 51, 0, ...
## $ hospitalizations <int> 3, 22, 0, 2, 12, 1, 14, 1, 14, 4, 0, 3, 5, 10, 2, 6, 1, 2, 0...

inspect(HELPrct)

##
## categorical variables:
## name class levels n missing distribution
## 1 anysub factor 2 246 207 yes (77.2%), no (22.8%)
## 2 sex factor 2 453 0 male (76.4%), female (23.6%)
## 3 g1b factor 2 453 0 no (72%), yes (28%)
## 4 homeless factor 2 453 0 housed (53.9%), homeless (46.1%)
## 5 link factor 2 431 22 no (62.2%), yes (37.8%)
## 6 racegrp factor 4 453 0 black (46.6%), white (36.6%) ...
## 7 satreat factor 2 453 0 no (71.5%), yes (28.5%)
## 8 substance factor 3 453 0 alcohol (39.1%), cocaine (33.6%) ...
## 9 treat factor 2 453 0 no (50.3%), yes (49.7%)
##
## quantitative variables:
## name class min Q1 median Q3 max mean sd n
## ...1 age integer 19.000 30.00 35.00 40.00 60.00 35.6534 7.7103 453
## ...2 anysubstatus integer 0.000 1.00 1.00 1.00 1.00 0.7724 0.4202 246
## ...3 cesd integer 1.000 25.00 34.00 41.00 60.00 32.8477 12.5145 453
## ...4 d1 integer 0.000 1.00 2.00 3.00 100.00 3.0596 6.1876 453
## ...5 daysanysub integer 0.000 5.00 33.00 164.25 268.00 75.3074 79.2374 244
## ...6 dayslink integer 2.000 74.00 361.00 365.00 456.00 255.6056 151.0227 431
## ...7 drugrisk integer 0.000 0.00 0.00 1.00 21.00 1.8872 4.3365 452
## ...8 e2b integer 1.000 1.00 2.00 3.00 21.00 2.5047 2.5245 214
## ...9 female integer 0.000 0.00 0.00 0.00 1.00 0.2362 0.4252 453
## ...10 i1 integer 0.000 3.00 13.00 26.00 142.00 17.9073 20.0202 453
## ...11 i2 integer 0.000 4.00 18.00 33.00 184.00 24.5475 28.0202 453
## ...12 id integer 1.000 119.00 233.00 348.00 470.00 233.4018 134.7467 453
## ...13 indtot integer 4.000 32.00 38.00 41.00 45.00 35.7285 7.1522 453
## ...14 linkstatus integer 0.000 0.00 0.00 1.00 1.00 0.3782 0.4855 431
## ...15 mcs numeric 6.763 21.68 28.60 40.94 62.18 31.6767 12.8393 453
## ...16 pcs numeric 14.074 40.38 48.88 56.95 74.81 48.0485 10.7846 453
## ...17 pss_fr integer 0.000 3.00 7.00 10.00 14.00 6.7064 3.9950 453
## ...18 sexrisk integer 0.000 3.00 4.00 6.00 14.00 4.6424 2.8002 453
## ...19 avg_drinks integer 0.000 3.00 13.00 26.00 142.00 17.9073 20.0202 453
## ...20 max_drinks integer 0.000 4.00 18.00 33.00 184.00 24.5475 28.0202 453
## ...21 hospitalizations integer 0.000 1.00 2.00 3.00 100.00 3.0596 6.1876 453
## missing
## ...1 0
## ...2 207
## ...3 0
## ...4 0
## ...5 209
## ...6 22
## ...7 1
## ...8 239
## ...9 0
## ...10 0
## ...11 0
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## ...12 0
## ...13 0
## ...14 22
## ...15 0
## ...16 0
## ...17 0
## ...18 0
## ...19 0
## ...20 0
## ...21 0

From this we see that there are 453 observational units in this data set and 30 variables. That’s plenty of
variables to get us started with exploration of data.

1.2.4 The KidsFeet data set

Here is another data set in the mosaic package:

head(KidsFeet)

## name birthmonth birthyear length width sex biggerfoot domhand
## 1 David 5 88 24.4 8.4 B L R
## 2 Lars 10 87 25.4 8.8 B L L
## 3 Zach 12 87 24.5 9.7 B R R
## 4 Josh 1 88 25.2 9.8 B L R
## 5 Lang 2 88 25.1 8.9 B L R
## 6 Scotty 3 88 25.7 9.7 B R R

1.2.5 The oldfaith data set

A final example data set comes from the alr4 package. This package is probably not loaded (unless you already
loaded it). You can load it from the Packages tab or by typing the command

library(alr4) # require(alr4) will also work

Once you have done that, you will have access to the data set containing information about Old Faithful
eruptions.

head(oldfaith)

## Duration Interval
## 1 216 79
## 2 108 54
## 3 200 74
## 4 137 62
## 5 272 85
## 6 173 55

If you want to know the size of your data set, you can ask it how many rows and columns it has with nrow(),
ncol(), or dim():
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nrow(oldfaith)

## [1] 270

ncol(oldfaith)

## [1] 2

dim(oldfaith)

## [1] 270 2

In this case we have 270 observations of each of two variables. In a data frame, the observational units are
always in the rows and the variables are always in the columns. If you create data for use in R (or most other
statistical packages), you need to make sure your data are also in this shape.

1.2.6 Using your own data

In the Environment tab you will “Import Dataset". Click on this import data from a CSV file, Excel spreadsheet,
or a few other formats. When you do this, the R code will be displayed, so you can see how it is done in R code.

If you are using the RStudio server, you will first need to upload your file to the server (unless you can access
the file via URL). To do this, choose “Upload" from the Files tab.

1.3 Graphical and Numerical Summaries of Data

1.3.1 The Most Important Template

Using the mosiac and ggformula packages, we can compute a wide variety of graphical and numerical summaries
using the following general template:

goal ( y ∼ x , data = mydata )

We will see this same template used again for linear and non-linear modeling as well, so it is is important to
master it.1

• goal: The name of the function generally describes your goal, the thing you want the computer to produce
for you. In the case of plotting, it is the name of the plot. When we do numerical summaries it will be
the name of the numerical summary (mean, median, etc.).

• y: For plots, this is the variable that goes on the y-axis.

• x: For plots, this is the variable that goes on the x-axis.

1This is textbook speak for "you should really take note of this – probably memorize it."
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• formula: Together, y x is called a formula. Very often we can think of y x as “y depends on x”.
We will see that sometimes we can omit y ore replace x with . (there must always be something on the
right-hand side). We will even see things like y x | z. But the most important formula to learn is y
x.

• mydata: A data frame must be given in which the variables mentioned in the formula can be found. Vari-
ables not found there will be looked for in the enclosing environment. Sometimes we will take advantage
of this to avoid creating a temporary data frame just to make a quick plot, but generally it is best to have
all the information inside a data frame.

1.4 Scatterplots

The most common way to look at two quantitative variables is with a scatter plot. The ggformula function for
this is gf_point(), and the basic syntax is

gf_point( yvar ~ xvar, data = dataName)

Let’s look at an example. Let’s see how bill length is realted to body mass in some penguins.

library(palmerpenguins)
head(penguins)

## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
## <fct> <fct> <dbl> <dbl> <int> <int> <fct> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male 2007
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~ 2007
## 3 Adelie Torgersen 40.3 18 195 3250 fema~ 2007
## 4 Adelie Torgersen NA NA NA NA <NA> 2007
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~ 2007
## 6 Adelie Torgersen 39.3 20.6 190 3650 male 2007

gf_point(bill_length_mm ~ body_mass_g, data = penguins)

## Warning: Removed 2 rows containing missing values (geom_point).
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That’s all there is to it. We can replace bill_length_mm, body_mass_g, and penguins with any variables and
data set we like to get the scatter plot we want.
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18 1. Graphical Summaries of Data

1.4.1 Adding Color

Let’s add some color. Consider the next two examples.

gf_point(bill_length_mm ~ body_mass_g, color = "navy", data = penguins)

## Warning: Removed 2 rows containing missing values (geom_point).
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gf_point(bill_length_mm ~ body_mass_g, color = ~ species, data = penguins)

## Warning: Removed 2 rows containing missing values (geom_point).
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• In the first we are setting the color of the dots to be navy.

• In the second, we are mapping color based on species. Think of color = species as “color depends
on species".

1.4.2 Transparency and dot size

With so much data in so little space, overplotting (dots on top of each other) can make it hard to see what is
going on. We can improve this plot by making the dots smaller and semi-transparent.

gf_point(bill_length_mm ~ body_mass_g, color = ~ species, data = penguins,
size = 0.8, alpha = 0.5)

## Warning: Removed 2 rows containing missing values (geom_point).
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There are many other options we can use to refine our plots. We’ll learn about some of them as we go along.
You can use R’s built-in help to find out more. Our you can type

gf_point()

## gf_point() uses
## * a formula with shape y ~ x.
## * geom: point
## * key attributes: alpha, color, size, shape, fill, group, stroke
##
## For more information, try ?gf_point

1.4.3 Conditional plots (aka Faceting)

The formula for a ggformula plot can be extended to create multiple panels, called facets, based on a “condition”,
often given by another variable. The general syntax for this becomes

plotname( y ~ x | condition, data = dataName )

You can read the formula y x | condition as saying that we want to know how y depends on x separately
for each condition. In our penguins example, we might divide up the data according to the islands on which
the penguins were spotted.

gf_point(bill_length_mm ~ body_mass_g | island, color = ~ species, data = penguins,
size = 0.8, alpha = 0.5)

## Warning: Removed 2 rows containing missing values (geom_point).
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Biscoe Dream Torgersen
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1.4.4 Other types of plots

A scatter plot will be our most common plot for two quantitative variables, but we can use the same template
for any otehr type of plot. Here are two examples.

gf_density2d(bill_length_mm ~ body_mass_g, color = ~ species, data = penguins, alpha = 0.5)

## Warning: Removed 2 rows containing non-finite values (stat_density2d).

gf_hex(bill_length_mm ~ body_mass_g, data = penguins, binwidth = c(250, 2))

## Warning: Removed 2 rows containing non-finite values (stat_binhex).
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1.5 Graphing the Distribution of One Variable

A distribution is described by telling what values occur and with what frequency. That is, the distribution
answers two questions:

• What values?

• How often?

Statisticians have devised a number of graphs to help us see distributions of a variable visually. In these graphs,
R can compute the y-variable for us. In this case, we simply omit the y part of the formula, so the general
syntax for making a graph or numerical summary of one variable in a data frame is

plotname( ~ variable, data = dataName )

In other words, there are three pieces of information we must provide to R in order to get the plot we want:

• The kind of plot. (gf_histogram(), gf_bar(), gf_density(), gf_boxplot(), etc.)

• The name of the variable

• The name of the data frame this variable is a part of.

Note: The same syntax works for numerical summaries as well – thanks to the mosaic package we can apply
the same syntax for mean(), median(), sd(), var(), max(), min(), etc. Later we will use this syntax again to
compute linear and nonlinear models.

1.5.1 Histograms (and density plots) for quantitative variables

Histograms (and density plots) are the two most common ways of displaying the distribution of a quantitative
variable.

Here are a couple examples:

gf_histogram( ~ Duration, data = oldfaith)
gf_histogram( ~ age, data = HELPrct)
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In each of these plots the height of the bar indicates how many observations fall within the range indicated by
the bottom of the bar. So in the histogram below, the red bar indicates that there are almost 60 eruptions of
duration between 100 and 125 seconds in this data set.
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22 1. Graphical Summaries of Data

gf_histogram( ~ Duration, data = oldfaith, binwidth = 25, boundary = 100) %>%
gf_histogram( ~ Duration, data = oldfaith %>% filter(Duration >100, Duration <= 125),

fill = "red", color = "black",
binwidth = 25, boundary = 100)
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We can control the (approximate) number of bins using the bins. The number of bins (and to a lesser extent
the positions of the bins) can make a histogram look quite different.

gf_histogram( ~ Duration, data = oldfaith, bins = 8 )
gf_histogram( ~ Duration, data = oldfaith, bins = 15 )
gf_histogram( ~ Duration, data = oldfaith, bins = 30 )
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We can use binwidth to set the width of the bins.

gf_histogram( ~ Duration, data = oldfaith, binwidth = 60 )
gf_histogram( ~ Duration, data = oldfaith, binwidth = 20 )
gf_histogram( ~ Duration, data = oldfaith, binwidth = 5 )
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R also provides a “smooth” version called a density plot and a triangular version called a frequency polygon:;

gf_density( ~ Duration, data = oldfaith )
gf_dens( ~ Duration, data = oldfaith )
gf_freqpoly( ~ Duration, data = oldfaith )
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## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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1.5.2 Describing the shape of a distribution

If we make a histogram of our data, we can describe the overall shape of the distribution. Keep in mind that
the shape of a particular histogram may depend on the choice of bins. Choosing too many or too few bins can
hide the true shape of the distribution. (When in doubt, make more than one histogram.)

Here are some words we use to describe shapes of distributions.

symmetric The left and right sides are mirror images of each other.

skewed The distribution stretches out farther in one direction than in the other. (We say the distribution is
skewed toward the long tail.)

uniform The heights of all the bars are (roughly) the same. (So the data are equally likely to be anywhere
within some range.)

unimodal There is one major “bump” where there is a lot of data.

bimodal There are two “bumps”.

outlier An observation that does not fit the overall pattern of the rest of the data.

We’ll learn about another graph used for quantitative variables (boxplots) soon.

1.5.3 Bar graphs for categorical variables

Bar graphs are a way of displaying the distribution of a categorical variable.

gf_bar( ~ species, data = penguins) # vertical bars
gf_bar(species ~ ., data = penguins) # horizontal bars

0

50

100

150

Adelie Chinstrap Gentoo

species

co
un

t

Adelie

Chinstrap

Gentoo

0 50 100 150

count

sp
ec

ie
s

Math 241 : Pruim Last Modified: January 23, 2021
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Statisticians rarely use pie charts because they are harder to read except in a few special cases (like comparing
a proportion to 50%).

1.5.4 Overlaying and faceting data

Overlaying and faceting work the same for these one variables plots as they did for the scatterplots above.

gf_bar( ~ species | island, data = penguins)
gf_histogram( ~ body_mass_g | species, data = penguins)

## Warning: Removed 2 rows containing non-finite values (stat_bin).

gf_dens( ~ body_mass_g, color = ~ species, data = penguins)

## Warning: Removed 2 rows containing non-finite values (stat_density).
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For example, we might like to see how the ages of men and women compare in the HELP study, or whether the
distribution of weights of male mosquitoes is different from the distribution for females.

gf_histogram( ~ age | sex, data = HELPrct, binwidth = 5)
gf_dens( ~ length | sex, data = KidsFeet )
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We can do the same thing for bar graphs.

gf_bar( ~ substance | sex, data = HELPrct)
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1.5.5 Grouping and bar charts

When dividing bar charts into multiple colors, we can present the segmented bars "stacked" (the default) or
"dodged":

gf_bar(~substance, fill = ~sex, data = HELPrct)
gf_bar(~substance, fill = ~sex, data = HELPrct, position = "dodge")

0

50

100

150

alcohol cocaine heroin

primary substance of abuse

co
un

t

sex

female

male

0

50

100

alcohol cocaine heroin

primary substance of abuse

co
un

t

sex

female

male

1.5.6 Proportions and bar charts

Sometimes it is better to display bars with proportions rather than counts. But then we must decide what to
use for the denominator. In the first example below, the total of all teh bars adds to 1. In the second plot, the
total adds to one for each x variable, which makes it easier to see how the proportions of male and female .

gf_props(~substance, fill = ~sex, data = HELPrct)
gf_props(~substance, fill = ~sex, data = HELPrct, denom = ~ x)
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1.6 Labeling plots

Often the defaults labels are not ideal for publication purposes. You can add titles and captions and change the
labeling of variables using gf_labs().

gf_point(bill_length_mm ~ body_mass_g | island, color = ~ species, data = penguins,
size = 0.8, alpha = 0.5) %>%

gf_labs(x = "body mass (g)", y = "bill length (mm)",
title = "Some penguin measurments", caption = "Data Source: palmerpenguins")

## Warning: Removed 2 rows containing missing values (geom_point).
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Notice the %>% in the example above. This important and connects the labeling below to the plot above.

1.7 Exporting Plots

You can save plots to files or copy them to the clipboard using the Export menu in the Plots tab. It is quite
simple to copy the plots to the clipboard and then paste them into a Word document, for example. You can
even adjust the height and width of the plot first to get it the shape you want. But there are much better ways
to produce documents with R graphics in them! See the next section.
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1.8 Reproducible Research

Copy-and-paste is a bad workflow for lots of reasons, including:

• It is tedious, unless there is very little to copy and paste.

• It is error-prone – it’s easy to copy to little or too much, or to grab the wrong thing, or to copy when you
want to cut or cut when you want to copy.

• If something changes, you have to start all over.

• You have no record of what you did (unless you are an unusual person who takes detailed notes about all
the copying and pasting).

So while copy-and-paste seems easy and convenient, it is not reproducible. Reproducibility is important when
projects are large, when it is important to have record of exactly what was done, or when the same analysis is
applied to multiple data sets (or a data set that is growing over time).

RStudio makes it easy to use techniques of reproducible research to create documents that include text, R
commands, R output, and R graphics.

1.8.1 R Markdown

The simplest version of this uses a format called R Markdown. Markdown is a simple mark up language that
allows for a few basic improvements on plain text (section headers, bulleted lists, numbered lists, bold, italics,
etc.) R Markdown adds the ability to mix in the R stuff. The end product is an HTML file, so it is especially
good for producing web documents.2

Creating a new document

To create a new R Markdown document, go to “File", “New File", then “R Markdown":

2You can actually mix in arbirary HTML and even css, so if you are good at HTML, you can have quite a bit of control over
how things look. Here will will focus on the basics.
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From there, choose either “document" or “from template". The mosaic plain template is a good starting point.

When you do this, a file editing pane will open with a template inserted. If you click on “Knit HTML", RStudio
will turn this into an HTML file and display it for you. Give it a try. You will be asked to name your file if you
haven’t already done so. If you are using the RStudio server in a browser, then your file will live on the server
(“in the cloud”) rather than on your computer.

If you look at the template file you will see that the file has two kinds of sections. Some of this file is just normal
text (with some extra symbols to make things bold, add in headings, etc.) You can get a list of all of these
mark up options by selecting the “Markdown Quick Reference" in the help menu.
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The second type of section is an R code chunk. These are colored differently to make them easier to see. You
can insert a new code chunk by selecting by selecting the appropriate chunk type (R in our case) from the menu
below.

You can also type

```{r}
```

to begin and end the code chunk if you would rather type. You can put any R code in these code chunks and
the results (text output or graphics) as well as the R code will be displayed in your HTML file.

R Markdown files must be self-contained

R Markdown files do not have access to things you have done in your console. (This is good, else your document
would change based on things not in the file.) This means that you must explicitly load any data packages that
you use in the R Markdown file. In this class, this means that most of your R Markdown files will have a chunk
near the beginning that includes

library(mosaic)

If you use one of the RMarkdown templates provided, this (and some otehr things) will be included in the
template and save you some time.
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1.8.2 Chunk options

R Markdown provides a number of chunk options that control how R code is processed. You can use them to
do things like:

• run the code without displaying it (good for polished reports – your client doesn’t want to see the code)

• show the code without running it – mainly useful for demonstration purposes

• control the size and alignment of graphics

You can set default values for the chunk options and you can also override them in individual chunks. See the
R Markdown help for more information about chunk options.

The default plots are often bigger than required. The following chunk options are a place to start. They can
be adjusted as necessary.

library(knitr)
opts_chunk$set(fig.width = 5, fig.height = 2, fig.align = "center", fig.show = "hold")

Some of these document settings can also be set in the YAML header (the top few lines of the RMarkdown file).

1.8.3 knitr/latex

There is another system that produces PDFs by combining LATEX and R. This is the system used to create this
document and it gives much more control over paper-like formatting. The quality is good enough for profession
publishing. If you already knwow LATEX, it is very easy to learn. If you don’t know LATEX, then you need to
learn the basics of LATEX to get going, but it isn’t very difficult.

R code and output can be copied and pasted as well. It’s best to use a fixed width font (like Courier) for R code
so that things align properly.

Note: RStudio provide some nice utilities for creating documents that include text, code, graphics, and statis-
tical analyses all in one document. That’s how this document was produced. The simpler of these is called
RMarkdown. The resulting file will be an HTML file with embedded plots. You can gain more control over
the output by using knitr which provides a way to combine LATEX and Rin a single document. The resulting
document in this case is a high quality PDF

1.9 Getting Help in RStudio

1.9.1 The RStudio help system

There are several ways to get RStudio to help you when you forget something. Most objects in packages have
help files that you can access by typing something like:

?bargraph
?histogram
?HELPrct

You can search the help system using
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help.search('Grand Rapids') # Does R know anything about Grand Rapids?

This can be useful if you don’t know the name of the function or data set you are looking for.

1.9.2 Tab completion

As you type the name of a function in RStudio, you can hit the tab key and it will show you a list of all the
ways you could complete that name, and after you type the opening parenthesis, if you hit the tab key, you will
get a list of all the arguments and (sometimes) some helpful hints about what they are.)

1.9.3 History

If you know you have done something before, but can’t remember how, you can search your history. The history
tab shows a list of recently executed commands. There is also a search bar to help you find things from longer
ago.

1.9.4 Error messages

When things go wrong, R tries to help you out by providing an error message. If you can’t make sense of the
message, you can try copying and pasting your command and the error message and sending to me in an email.
One common error message is illustrated below.

fred <- 23
frd

## Error in eval(expr, envir, enclos): object ’frd’ not found

The object frd is not found because it was mistyped. It should have been fred. If you see an “object not found”
message, check your typing and check to make sure that the necessary packages have been loaded.

1.10 Graphical Summaries – Important Ideas

1.10.1 The Most Important Template

The plots we have created have all followed a single template

goal ( formula , data = mydata , ... )

We will see this same template used again for numerical summaries and linear and non-linear modeling as well,
so it is is important to master it.

• goal: The name of the function generally describes your goal, the thing you want the computer to produce
for you. In the case of plotting, it is the name of the plot. When we do numerical summaries it will be
the name of the numerical summary (mean, median, etc.).
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• formula: For plotting, the formula describes which variables are used on the x-axis, the y-axis and for
conditioning. The general scheme is

y ~ x | z

where z is the conditioning variable. Sometimes y or z are missing (but the right-hand side x must always
be included in a formula).

• mydata: A data frame must be given in which the variables mentioned in the formula can be found. Vari-
ables not found there will be looked for in the enclosing environment. Sometimes we will take advantage
of this to avoid creating a temporary data frame just to make a quick plot, but generally it is best to have
all the information inside a data frame.

• ... There are many optional arguments to control sizes, colors, etc. We will introduce these as they are
needed. Consult the help files for assistance.

Just fill in the boxes and get your plot.

1.10.2 Patterns and Deviations from Patterns

The goal of a statistical plot is to help us see

• potential patterns in the data, and

• deviations from those patterns.

1.10.3 Different Plots for Different Kinds of Variables

Graphical summaries can help us see the distribution of a variable or the relationships between two (or more)
variables. The type of plot used will depend on the kinds of variables involved. There is a nice summary of
these on page 48. You can use demo() to see how to get R to make the plots in this section.

Later, when we do statistical analysis, we will see that the analysis we use will also depend on the kinds of
variables involved, so this is an important idea.

1.10.4 Side-by-side Plots and Overlays Can Reveal Importance of Additional Factors

The ggformula graphics plots make it particularly easy to generate plats that divide the data into groups and
either produce a panel for each group (using |) or display each group in a different way (different colors or
symbols, using the groups argument). These plots can reveal the possible influence of additional variables –
sometimes called covariates.

1.10.5 Area = (relative) frequency

Many plots are based on the key idea that our eyes are good at comparing areas. Plots that use area (e.g.,
histograms, mosaic plots, bar charts, pie charts) should always obey this principle

Area = (relative) frequency

Plots that violate this principle can be deceptive and distort the true nature of the data.
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1.11 Exercises

The solutions to these exercises should be done using an RMarkdown document and knitTHML in RStudio.
Include both the plots and the code you used to make them as well as any required discussion. Once you get
the plots figured out, feel free to use some of the bells and whistles to make the plots even better.

1.1 Create a scatterplot using the two variables in the oldfaith data frame (available in the alr4 package).
What do we learn about Old Faithful eruptions from this plot?

1.2 Where do the data in the CPS85 data frame (in the mosaic package) come from? What are the observational
units? How many are there?

1.3 Choose a quantitative variable that interests you in the CPS85 data set. Make an appropriate plot and
comment on what you see.

1.4 Choose a categorical variable that interests you in the CPS85 data set. Make an appropriate plot and
comment on what you see.

1.5 Create a plot that displays two or more variables from the CPS85 data. At least one should be quantitative
and at least one should be categorical. Comment on what you can learn from your plot.

1.6 Where do the data in the mpg data frame (in the ggplot2 package) come from? What are the observational
units? How many are there?

1.7 Choose a quantitative variable that interests you in the mpg data set. Make an appropriate plot and
comment on what you see.

1.8 Choose a categorical variable that interests you in the mpg data set. Make an appropriate plot and comment
on what you see.

1.9 Create a plot that displays two or more variables from the mpg data. At least one should be quantitative
and at least one should be categorical. Comment on what you can learn from your plot.

1.10 The file at http://www.calvin.edu/~rpruim/data/Fires.csv is a csv file containing data on wild lands
fires in the US over a number of years. You can load this data one of two ways.

• Go to the workspace tab, select Import Data Set, choose From Web URL... and follow the instructions.

• Use the following command in R:
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# equivalent to "From Text (base)" in RStudio
Fires <- read.csv("https://rpruim.github.io/Engineering-Statistics/data/Fires.csv")

# alternative method -- equivalent to "From Text (readr)" in RStudio
library(readr)
Fires <- read_csv("https://rpruim.github.io/Engineering-Statistics/data/Fires.csv")

##
## – Column specification –––––––––––––––––––––––––––––––––
## cols(
## Year = col_double(),
## Fires = col_double(),
## Acres = col_double()
## )

You can also use either of these methods to read from a file rather than from a web URL, so this is a good way
to get your own data into R.

a) The source for these data claim that data before a certain year should not be compared to data from after
that year because the older data were computed a different way and are not considered as reliable. What
year is the break point? Use graphs of the data over time to estimate when something changed.

b) You can trim the data to just the subset you want using subset(). For example, to get just the subset of
years since 1966, you would use

Fires2 <- subset(Fires, Year > 1966)

Be sure to use a new name if you want to keep the original data available.
Do this to create a data set that contains only the data from the new data regime (based on your answer
in the previous problem).

c) Using only the data from this smaller set, how would describe what is happening with fires over time?

1.11 Use R’s help system to find out what the i1 and i2 variables are in the HELPrct data frame. Make
histograms for each variable and comment on what you find out. How would you describe the shape of these
distributions? Do you see any outliers (observations that don’t seem to fit the pattern of the rest of the data)?

1.12 Compare the distributions of i1 and i2 among men and women.

1.13 Compare the distributions of i1 and i2 among the three substance groups.

1.14 The SnowGR contains historical data on snowfall in Grand Rapids, MI. The snowfall total for January,
2014 was 36.6 inches.

a) Create a histogram of January snowfall totals. How unusual is 36.6 inches of snow in January?

b) If there is a lot of snow in January, should we expect to have unusually much or little snow in February?
Make a scatter plot comparing January and February snowfall totals and comment on what you see there.
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2
Numerical Summaries

2.1 Tabulating Data

A table is one kind of numerical summary of a data set. In fact, you can think of histograms and bar graphs
as graphical representations of summary tables. But sometimes it is nice to have the table itself. R provides
several ways of obtaining such tables.

2.1.1 Tabulating a categorical variable

The formula interface

There are several functions for tabulating categorical variables. tally() uses a syntax that is very similar to
bargraph(). We’ll call this method the formula interface. (R calls anything with a tilde (˜) a formula.)

tally( ~ sex, data = KidsFeet )

## sex
## B G
## 20 19

tally( ~ sex, data = KidsFeet, format = "prop" )

## sex
## B G
## 0.5128 0.4872

tally( ~ sex, data = KidsFeet, format = "perc" )

## sex
## B G
## 51.28 48.72
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The $-interface

table() and its cousins use the $ operator which selects one variable out of a data frame.

KidsFeet$sex # general syntax: dataframe$variable

## [1] B B B B B B B G G B B B B B G G G G G G B B G G G B G B B B G G G B B G G G G
## Levels: B G

table(KidsFeet$sex)

##
## B G
## 20 19

# tally() is ambidextrous:
tally(KidsFeet$sex)

## X
## B G
## 20 19

We’ll call this interface the $-interface.

Two interfaces

Some functions in R require the formula interface, some require the $-interface, and some allow you to use either
one.1

My advice is to use formula interfaces whenever they are available and to choose tools that make this possible.

2.1.2 Tabulating a quantitative variable

Although tally() and table() work with quantitative variables as well as categorical variables, this is only
useful when there are not too many different values for the variable.

tally( ~age, data = HELPrct )

## age
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
## 1 2 3 8 5 8 7 13 18 15 18 18 20 28 35 18 25 23 20 18 27 10 20 10 13 7 13 5 14 5
## 49 50 51 52 53 54 55 56 57 58 59 60
## 8 2 1 1 3 1 2 1 2 2 2 1

1One of the things that the mosaic package does is provide a formula interface for many functions that only had a $-interface
before.
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Tabulating in bins (optional)

Usually a graph is the best way to display and summarize quantitative data, but if you need to creat a summary
table, you may need to group quantitative data into bins. We just have to tell R what the bins are. For example,
suppose we wanted to group the 20s, 30s, 40s, etc. together.

# let's add a new variable to HELPrct
HELPrct <- HELPrct %>%
mutate(binnedAge = cut(age, breaks=c(10,20,30,40,50,60,70) ))

head(HELPrct)

## age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b
## 1 37 1 yes 49 3 177 225 0 NA 0 male yes
## 2 37 1 yes 30 22 2 NA 0 NA 0 male yes
## 3 26 1 yes 39 0 3 365 20 NA 0 male no
## 4 39 1 yes 15 2 189 343 0 1 1 female no
## 5 32 1 yes 39 12 2 57 0 1 0 male no
## 6 47 1 yes 6 1 31 365 0 NA 1 female no
## homeless i1 i2 id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk
## 1 housed 13 26 1 39 1 yes 25.112 58.41 0 black no 4
## 2 homeless 56 62 2 43 NA <NA> 26.670 36.04 1 white no 7
## 3 housed 0 0 3 41 0 no 6.763 74.81 13 black no 2
## 4 housed 5 5 4 28 0 no 43.968 61.93 11 white yes 4
## 5 homeless 10 13 5 38 1 yes 21.676 37.35 10 black no 6
## 6 housed 4 4 6 29 0 no 55.509 46.48 5 black no 5
## substance treat avg_drinks max_drinks hospitalizations binnedAge
## 1 cocaine yes 13 26 3 (30,40]
## 2 alcohol yes 56 62 22 (30,40]
## 3 heroin no 0 0 0 (20,30]
## 4 heroin no 5 5 2 (30,40]
## 5 cocaine no 10 13 12 (30,40]
## 6 cocaine yes 4 4 1 (40,50]

tally( ~ binnedAge, data = HELPrct)

## binnedAge
## (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]
## 3 113 224 97 16 0

That’s not quite what we wanted: 30 is in with the 20s, for example. Here’s how we fix that.

HELPrct <- HELPrct %>%
mutate(binnedAge = cut(age, breaks=c(10,20,30,40,50,60,70), right=FALSE) )

tally( ~ binnedAge, data = HELPrct )

## binnedAge
## [10,20) [20,30) [30,40) [40,50) [50,60) [60,70)
## 1 97 232 105 17 1

We won’t use this very often, since typically seeing this information in a histogram is more useful.
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2.1.3 Cross-tables: Tabulating two or more variables

tally() can also compute cross tables for two (or more) variables.

tally(sex ~ substance, data=HELPrct)

## substance
## sex alcohol cocaine heroin
## female 36 41 30
## male 141 111 94

tally(~ sex + substance, data=HELPrct)

## substance
## sex alcohol cocaine heroin
## female 36 41 30
## male 141 111 94

2.2 Working with Pre-Tabulated Data

Sometimes data arrive pre-tabulated. We can use gf_col() instead of gf_bar() to graph pre-tabulated data.

library(abd) # data sets from Analysis of Biological Data
TeenDeaths

## cause deaths
## 1 Accidents 6688
## 2 Homicide 2093
## 3 Suicide 1615
## 4 Malignant tumor 745
## 5 Heart disease 463
## 6 Congenital abnormalities 222
## 7 Chronic respiratory disease 107
## 8 Influenza and pneumonia 73
## 9 Cerebrovascular diseases 67
## 10 Other tumor 52
## 11 All other causes 1653

gf_col(deaths ~ cause, data=TeenDeaths) %>%
gf_refine(coord_flip())

Last Modified: January 23, 2021 Stat 241 : Pruim



2. Numerical Summaries 39

Accidents

All other causes

Cerebrovascular diseases

Chronic respiratory disease

Congenital abnormalities

Heart disease

Homicide

Influenza and pneumonia

Malignant tumor

Other tumor

Suicide

0 2000 4000 6000

deaths
ca

us
e

Notice that by default the causes are displayed in alphabetical order. R assumes that categorical data is nominal
(that is, there is no particular natural or logical ordering to the categories) unless you say otherwise.

Here is an easy way to have things appear in a different order. The causes of death are reordered in order of
increasing number of deaths caused.

gf_col( deaths ~ reorder(cause, deaths), data = TeenDeaths) %>%
gf_refine(coord_flip()) %>%
gf_labs(x = 'Cause of Death', y = 'Number of Deaths')
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2.3 Summarizing Distributions of Quantitative Variables

Important Note

Numerical summaries are a convenient way to describe a distribution, but remember that numerical summaries
do not necessarily tell you everything there is to know about a distribution. When working with a new dataset,
it is always important to explore the data as fully as possible (commonly including graphical as well as numerical
summaries, and sometimes even examining the data table directly) before accepting any simplified summary as
a good representation of the data. You might discover certain patterns in the data, interesting features, or even
outliers or mistakes in the data, that make certain summaries misrepresentations of the whole.

Notation

In statistics n (or sometimes N) almost always means the number of observations (i.e., the number of rows in
a data frame).
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If y is a variable in a data set with n cases, we can denote the n values of y as

• y1, y2, y3, . . . , yn (in the original order of the data).

• y(1), y(2), y(3), . . . y(n) (in sorted order from smallest to largest).

The symbol
∑

represents summation (adding up a bunch of values).

2.4 Measures of Center

Measures of center attempt to give us a sense of what is a typical value for the distribution.

mean of y = y =

n∑
i=1

yi

n
=

sum of values
number of values

median of y = the “middle” number (after putting the numbers in increasing order)

• The mean is the “balancing point” of the distribution.

• The median2 is the 50th percentile: half of the distribution is below the median, half is above.

• If the distribution is symmetric, then the mean and median are the same.

• In a skewed distribution, the mean is pulled farther toward the tail than the median is.

• A few very large or very small values can change the mean a lot, so the mean is sensitive to outliers
and is a better measure of center when the distribution is symmetric than when it is skewed.

• The median is a resistant measure (resistant to the presence of outlier) – it is not affected much by a
few very large or very small values.

2.5 Measures of Spread

variance of y = s2
y =

n∑
i=1

(yi − y)2

n− 1

standard deviaiton of y = sy =
√
s2
y

= square root of variance

interquartile range = IQR = Q3 −Q1

= difference between first and third quartiles (defined shortly)
2A note about calculating medians: If the number of datapoints is odd, the median is the middle value (after putting the

observations in increasing order). In cases where there is an even number of observations, the median is the average of the middle
two observations.
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• Roughly, the standard deviation is the “average deviation from the mean". (That’s not exactly right
because of the squaring involved and because we are dividing by n − 1 instead of by n. More on that
denominator later.)

• The mean and standard deviation are especially useful for describing normal distributions and other
unimodal, symmetric distributions that are roughly “bell-shaped”. (We’ll learn more about normal distri-
butions later.)

• Like the mean, the variance and standard deviation are sensitive to outliers and less suited for summarizing
skewed distributions.

• It is perhaps of some value to compute the variance and standard deviation by hand once or twice to make
sure you understand how these measures are defined, but we will typically let R do the calculations for us.

To get a numerical summary of a variable (a statistic), we need to tell R which statistic we want and the variable
and data frame involved. There several ways we can do this in R. Here are several ways to get the mean, for
example:

mean(HELPrct$age) # this is the old fashioned way

## [1] 35.65

mean(~ age, data = HELPrct) # similar to our plotting methods; only works for some functions

## [1] 35.65

df_stats(~ age, data = HELPrct, mean) # formula-based and very flexible

## response mean
## 1 age 35.65

Using the formula style, we can now compute several different statistics.

mean( ~ age, data = HELPrct)

## [1] 35.65

sd( ~ age, data = HELPrct)

## [1] 7.71

var( ~ age, data = HELPrct)

## [1] 59.45

median( ~ age, data = HELPrct)

## [1] 35
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IQR( ~ age, data = HELPrct)

## [1] 10

df_stats( ~ age, data = HELPrct) # this computes several statistics at once

## response min Q1 median Q3 max mean sd n missing
## 1 age 19 30 35 40 60 35.65 7.71 453 0

It is also possible to compute these statistics separately for each of several groups. The syntax is much like the
the syntax we used when plotting. In fact, we have two choices for the formula: y ~ x or ~ x | z.

mean(age ~ sex, data = HELPrct)

## female male
## 36.25 35.47

sd(age ~ sex, data = HELPrct)

## female male
## 7.585 7.750

df_stats( ~ age | sex, data = HELPrct )

## response sex min Q1 median Q3 max mean sd n missing
## 1 age female 21 31 35 40.5 58 36.25 7.585 107 0
## 2 age male 19 30 35 40.0 60 35.47 7.750 346 0

2.5.1 A word of caution

None of these measures (especially the mean and median) is a particularly good summary of a distribution if
the distribution is not unimodal. The histogram below shows the lengths of eruptions of the Old Faithful geyser
at Yellowstone National Park.

df_stats(~ Duration, data = oldfaith)

## response min Q1 median Q3 max mean sd n missing
## 1 Duration 96 130 240 267.8 306 209.9 68.39 270 0

gf_histogram( ~ Duration, data = oldfaith, bins = 20) %>%
gf_labs(title = "Old Faithful Eruption Times", x = "duration (sec)")
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Notice that the mean and median do not represent typical eruption times very well. Nearly all eruptions are
either quite a bit shorter or quite a bit longer. (This is especially true of the mean.)

2.5.2 Box plots

Boxplots (also called box-and-whisker plots) are a graphical representation of a 5-number summary of a
quantitative variable. The five numbers are the five quantiles:

• Q0, the minimum

• Q1, the first quartile (25th percintile)

• Q2, the median (50th percentile)

• Q3, the third quartile (75th percentile)

• Q4, the maximum

gf_boxplot(~age, data=HELPrct)
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Boxplots provide a way of comparing multiple groups that is especially informative and visually effective. Here
is one way to make boxplots of multiple groups (it should look familiar from what we know about histogram):

gf_boxplot(~age | substance, data=HELPrct)
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But gf_boxplot() has a better way. Put the quantitative variable on one side of the wiggle and the categorical
on the other. The placement determines which goes along the vertical axis and which along the horizontal axis
– just like it did for gf_point().

gf_boxplot(substance ~ age, data=HELPrct)
gf_boxplot(age ~ substance, data=HELPrct)
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And we can combine this idea with conditioning. Careful: The quantitative variable must be the “y" variable
in the formula.

gf_boxplot(age ~ substance | homeless, data=HELPrct)
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2.5.3 Small data sets

When we have relatively small data sets, it may not make sense to use a boxplot. With very few observations,
boxplots can be misleading, in that they suggest the presence of more observations than are really contained
in the dataset. In these cases, it may be better to display all the data. gf_jitter() allows you to put a
categorical variable along one axis and a quantitative variable along the other. For some data sets, either option
can produce a plot that gives a good picture of the data.

gf_jitter( weight ~ sex, data = Mosquitoes, width = 0.1, height = 0)
gf_boxplot( weight ~ sex, data = Mosquitoes)
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Note the effect of the width = 0.1, height = 0 – this tells gf_jitter() to move each data point slightly
left or right, but not at all up or down. to reduces overplotting (data points being plotted exactly on top of
one another) without losing any information, making it clearer how many data points were observed for each
possible combination of x- and y-values.

2.6 Summarizing Categorical Variables

The most common summary of a categorical variable is the proportion of observations in each category. For
a single category:

p̂ =
number in one category

n

Proportions can be expressed as fractions, decimals or percents. For example, if there are 10 observations in
one category and n = 50 observations in all, then

p̂ =
10

25
=

2

5
= 0.40 = 40%

If we code our categorical variable using 1 for observations in a single category of interst – “the one category"
– and 0 for observations in any other category, then a proportion is a sample mean.

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

25
=

10

25

2.7 Relationships Between Two Variables

It is also possible to give numerical summaries of the relationship between two variables. The most common
one is the correlation coefficient, which we will learn about later.
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2.8 Exercises

2.1 Create a data set with n = 6 values, each an integer between 0 and 10 (inclusive) that has the smallest
possible variance. Compute the mean and variance of this data set “by hand” (that is, without using mean() or
sd() or var() in R or similar features on a calculator).

2.2 Create a data set with n = 6 values, each an integer between 0 and 10 (inclusive) that has the largest
possible variance. Compute the variance of this data set “by hand” (that is, without using mean() or sd() or
var() in R or similar features on a calculator).

2.3 Create side-by-side boxplots of the variable i1 (average number of drinks per day) comparing the different
substance groups in the HELPrct data frame.

For each substance group, explain how you can tell from the boxplots whether the mean will be larger than
the median or the median larger than the mean.

2.4 Compute the mean and median values of i1 (average number of drinks per day) for each of the substance
groups in the HELPrct data frame.
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3
Probability

3.1 Key Definitions and Ideas

random process A repeatable process that has multiple unpredictable potential outcomes.

Although we sometimes use language that suggests that a particular result is random, it is really the
process that is random, not its results.

outcome A potential result of a random process.

sample space The set of all possible potential outcomes of a random process.

event A subset of the sample space. That is, a set of outcomes (possibly all or none of the outcomes).

Statisticians often use capital letters from the beginning of the alphabet for events.

trial One repetition of a random process.

mutually exclusive events. Events that cannot happen on the same trial.

probability A numerical value between 0 and 1 assigned to an event to indicate how often the event occurs
(in the long run).

random variable A random variable is a variable whose value is a numerical outcome of a random process.

Examples of random variables:

• Roll a die and record the number.

• Roll two dice and record the sum.

• Flip 100 coins and count the number of heads.

• Sample 1000 people and count how many approve of the job the president is doing.

Note: Statisticians usually use capital letters (often from the end of the alphabet) for random variables,
like this: Let X be the number of heads in 10 flips of a fair coin. What is P(X = 5)?

probability distribution The distribution of a random variable. (Remember that a distribution describes
what values? and with what freqency? )

As an example of a probability distribution, we can first consider a discrete random variable. Most of the
examples of random variables given above are discrete. In other words, the values they can take on come from
a set containing a finite number of possible values. For example, if you roll a 6-sided die and record the number
that comes up, there are only size possible outcomes, which are equally likely: the integers 1, 2, 3, 4, 5 and 6.
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For discrete random variables, the probability distribution shows all the possible values on the x-axis, and the
likelihood of observing each of those values on the y-axis. Since there are a finite number of possible values that
can be observed, these likelihoods are actually the probabilities of observing each outcome, and the sum of all
the probabilities must be 1 (see section 3.3 for details). For our example, where we rolled a die and recorded
the value:
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Things are a bit more complicated for continuous random variables (the ones that can take on any numerical
value). Here, there sample space (the set of possible distinct values the random variable can take on) is infinite.
One consequence of this fact is that the interpretation of the y-axis values of the probability distribution changes.
The y-axis will still indicate the relative likelihood of observing any given value of the random variable. However,
here the random variable can take on an infinite number of possible values. In this case, we can’t interpret the
y-axis values as probabilities. They y axis units are called “Likelihood" or "Density", and they indicate the
relative frequency of each outcome. For a densityplot, Density is scaled such that the integral over all possible
x-values (the area under the curve) is 1. (For a histogram, Density is scaled so that the total area of all the boxes
added together is 1.) We can think of the histograms and density plots we have been creating using continuous
variables from R datasets as attempts to use data to approximate the distributions of random variables. For
example, we might consider the growth of flower petals of the iris Iris setosa as a random process, and let X be a
random variable that is the length of each iris petal. We could plot a histogram to approximate the distribution
of X using the variable Petal.Length from the iris data (from the datasets package in base R).
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3.2 Calculating Probabilities Empirically

We would like to calculate the probability of an event A, denoted P(A).

In the next section, we will see how to calculate probabilities based on the Axioms of probability, and logic.
But first, we will consider ways to make the calculations empirically – based on observing many repetitions of
a random process (in real life or in a computer simulation) and observing how often an event of interest occurs.

Random processes are repeatable, so practically, we can calculate empirical probabilities by simply repeating
the process over and over and keeping track of how often the event A occurs. For example, we could flip a coin
10,000 times and see what fraction are heads.1

Empirical Probability =
number of times A occured

number of times random process was repeated

Modern computing provides another way to compute empirical probabilities. If we can simulate our random
process on a computer, then we can repeat the process many times very quickly.

Example 3.2.1. Q. What is the probability of getting exactly 5 heads if you flip a fair coin 10 times?
Using our random variable notation, let X be the number of heads in 10 flips of a fair coin. We want to know
P(X = 5).

A. The rflip() function simulates flipping a coin as many times as we like.

rflip(10)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T H H H T T H T H T
##
## Number of Heads: 5 [Proportion Heads: 0.5]

The do() function allows us to execute an R command ("do" somthing in R) over and over, as many times
as we choose. Here, our rflip() command simulates 10 coin-flips. First we’ll "do" our command three times
and show the results. Then we’ll do it 10,000 times and store the results in a variable called tosses, so we can
create a table and a plot showing the empirical distribution.

do(3) * rflip(10)

## n heads tails prop
## 1 10 6 4 0.6
## 2 10 5 5 0.5
## 3 10 4 6 0.4

do(10000) * rflip(10) -> tosses
tally(~ heads, data = tosses, format = "prop")

## heads
## 0 1 2 3 4 5 6 7 8 9 10
## 0.0009 0.0088 0.0459 0.1205 0.2091 0.2442 0.1978 0.1194 0.0419 0.0102 0.0013

1This has actually been done a couple of times in history, including once by mathematician John Kerrich while he was a prisoner
of war during World War II.
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gf_histogram( ~ heads, data = tosses, binwidth = 1)

0

500

1000

1500

2000

2500

0.0 2.5 5.0 7.5 10.0

heads

co
un

t

Based on this sample, we would estimate that P(X = 5) ≈ 0.244.

Example 3.2.2. Q. Use simulations to estimate the probability of rolling doubles using two fair standard
dice.

A. We can simulate rolling a die with the following code:

1:6 # the numbers 1 through 6

## [1] 1 2 3 4 5 6

resample(x = 1:6, size=10) # ten rolls of a 6-sided die

## [1] 3 3 4 5 6 1 6 2 6 3

The first 2 input arguments of resample() are x (the set of values from which you want to resample) and size
(the number of items to choose from x). You can also think of size as the number of times to sample from x,
if you are imagining sampling one item from x each time.

If we do this 10,000 times for each of two dice...

die1 <- resample(1:6, 10000)
die2 <- resample(1:6, 10000)
# let's check that things look reasonable
head(die1)

## [1] 3 2 4 5 6 5

head(die2)

## [1] 1 6 5 3 1 3

Then we can tabulate how often the two numbers matched in one of two ways:
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tally( ~(die1==die2) ) # NOTE the double == here

## (die1 == die2)
## TRUE FALSE
## 1708 8292

prop( ~(die1==die2) ) # NOTE the double == here

## prop_TRUE
## 0.1708

So the probability appears to be approximately 0.171.

Example 3.2.3. Q. Use simulation to estimate the probability of rolling a sum of 8 when rolling two fair
six-sided dice.

A. We have already generated 10000 random rolls, so let’s just reuse them. (Alternatively, we could generate
new rolls.)

s <- die1 + die2
# R adds element-wise:
# first entry of die1 + first of die2,
# second to second, etc.
prop( ~ (s == 8) )

## prop_TRUE
## 0.1504

We can estimate the probability of any sum the same way.

tally( ~ s )

## s
## 2 3 4 5 6 7 8 9 10 11 12
## 276 568 836 1061 1353 1637 1504 1108 825 531 301

tally( ~ s, format = "percent" ) # if we are too lazy to divide by 10000 ourselves

## s
## 2 3 4 5 6 7 8 9 10 11 12
## 2.76 5.68 8.36 10.61 13.53 16.37 15.04 11.08 8.25 5.31 3.01

Here’s a slightly fancier version that puts all the information into a data frame. Note the use of the function
data.frame() to create the data table:

rolls <- data.frame( first = die1, second = die2, sum = die1 + die2 )
head(rolls)

## first second sum
## 1 3 1 4
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## 2 2 6 8
## 3 4 5 9
## 4 5 3 8
## 5 6 1 7
## 6 5 3 8

tally( ~sum, data = rolls, format = "proportion")

## sum
## 2 3 4 5 6 7 8 9 10 11 12
## 0.0276 0.0568 0.0836 0.1061 0.1353 0.1637 0.1504 0.1108 0.0825 0.0531 0.0301

gf_histogram( ~ sum, data = rolls, binwidth = 1) # setting width is important for integer data
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3.3 Calculating Probabilities Theoretically

The theoretical method combines

1. Some basic facts about probability (the Probability Axioms and Rules),

2. Some assumptions about the particular situation at hand, and

3. Mathematical reasoning (arithmetic, algebra, logic, etc.).

3.3.1 The Three Probability Axioms

Let S be the sample space and let A and B be events.

1. Probability is between 0 and 1: 0 ≤ P(A) ≤ 1.

2. The probability of the sample space is 1: P(S) = 1.

3. Additivity: If A and B are mutually exclusive, then P(A or B) = P(A) + P(B).

Last Modified: January 23, 2021 Stat 241 : Pruim



3. Probability 53

Notation Notes

P(A or B) is the probability that either A or B (or both) occurs. Often this is written P(A ∪ B). A ∪ B is
usually read “A union B”. The union of two sets is the set that contains all elements of both sets.

P(A and B) is the probability that both A and B occur. This is also written P(A ∩ B). A ∩ B is usually read
“A intersect B”.

Saying that A and B are mutually exclusive is the same as saying that there are no outcomes in A ∩ B, i.e.,
that A ∩B = ∅.

3.3.2 Other Probability Rules

These rules all follow from the axioms (although we will not necessarily prove them all here).

The Addition Rule

If events A and B are mutually exclusive, then

P(A or B) = P(A) + P(B) .

More generally,
P(A or B) = P(A) + P(B)− P(A and B) .

The Complement Rule

P(notA) = 1− P(A)

The Equally Likely Rule

If the sample space consists of n equally likely outcomes, then the probability of an event A is given by

P(A) =
number of outcomes in A

n
=
|A|
|S|

.

Warning: One of the most common mistakes in probability is to apply this rule when the outcomes are not
equally likely.

Examples 3.3.1.

1. Coin Toss: P(heads) = 1
2 if heads and tails are equally likely.

2. Rolling a Die: P(even) = 3
6 if the die is fair (each of the six numbers equally likely to occur).
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3. Sum of two Dice: the sum is a number between 2 and 12, but these numbers are NOT equally likely.

There are 36 equally likely combinations of two dice:

1,1 2,1 3,1 4,1 5,1 6,1

1,2 2,2 3,2 4,2 5,2 6,2

1,3 2,3 3,3 4,3 5,3 6,3

1,4 2,4 3,4 4,4 5,4 6,4

1,5 2,5 3,5 4,5 5,5 6,5

1,6 2,6 3,6 4,6 5,6 6,6

Let X be the sum of two dice.

• P(X = 3) = 2
36 = 1

18

• P(X = 7) = 6
36 = 1

6

• P(doubles) = 6
36 = 1

6

4. Punnet Squares

A a

A AA Aa

a Aa aa

This example comes from animal or human genetics. Here, we consider a gene with two alleles: A is
the dominant allele, and a is the recessive one. Each individual has two copies of every gene, so there
are three possible combinations of alleles (called “genotypes"): AA, Aa, and aa. AA and Aa individuals
have the dominant A physical characteristic (called the “phenotype"); aa individuals have the recessive
a phenotype. Imagine that two Aa individuals mate and produce offspring. In this Aa × Aa cross, if A
is the dominant allele, then the probability of the dominant phenotype is 3

4 , and the probability of the
recessive phenotype is 1

4 because each of the four possible crossings is equally likely.
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Cartoon credit: http://xkcd.com/634/
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3.4 Conditional Probability

Example 3.4.1. Q. Suppose a family has two children and one of them is a boy. What is the probability that
the other is a girl?

A. We’ll make the simplifying assumption that boys and girls are equally likely (which is not exactly true).
Under that assumption, there are four equally likely families: BB, BG, GB, and GG. But only three of these
have at least one boy, and we already know our family has at least one boy, so our sample space is really
{BB,BG,GB}. Of these, two have a girl as well as a boy. So the probability is 2/3 (see Figure 3.1).

GG GB BG BB probability = 2/3

Figure 3.1: Illustrating the sample space for Example 3.4.1.

We can also think of this in a different way. In our original sample space of four equally likely families,

P(at least one girl) = 3/4 ,

P(at least one girl and at least one boy) = 2/4 , and
2/4

3/4
= 2/3 ;

so 2/3 of the time when there is at least one boy, there is also a girl. We will denote this probability as
P(at least one girl | at least one boy). We’ll read this as “the probability that there is at least one girl given
that there is at least one boy”. See Figure 3.2 and Definition 3.4.

A
B

Figure 3.2: A Venn diagram illustrating the definition of conditional probability. P(A | B) is the ratio of the
area of the football shaped region that is both shaded and striped (A∩B) to the area of the shaded circle (B).

Let A and B be two events such that P(B) 6= 0. The conditional probability of A given B is defined
by

P(A | B) =
P(A ∩B)

P(B)
.

If P(B) = 0, then P(A | B) is undefined.

Example 3.4.2. A class of 5th graders was asked what color should be used for the class T-shirt, red or
purple. The table below contains a summary of the students’ responses:
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Color

Red Purple

Girls 7 9

Boys 10 8

Q. Suppose we randomly select a student from this class. Let R be the event that a child prefers a red T-shirt.
Let B be the event that the child is a boy, and let G be the event that the child is a girl. Express each of the
following probabilities in words and determine their values:

• P(R),

• P(R | B),

• P(B | R),

• P(R | G),

• P(G | R),

• P(B | G).

A. The conditional probabilities can be computed in two ways. We can use the formula from the definition of
conditional probability directly, or we can consider the condition event to be a new, smaller sample space and
read the conditional probability from the table.

• P(R) = 17/34 = 1/2 because 17 of the 34 kids prefer red
This is the probability that a randomly selected student prefers red

• P(R | B) =
10/34

18/34
=

10

18
because 10 of the 18 boys prefer red

This is the probability that a randomly selected boy prefers red

• P(B | R) =
10/34

17/34
=

10

17
because 10 of the 17 students who prefer red are boys.

This is the probability that a randomly selected student who prefers red is a boy.

• P(R | G) =
7/34

16/34
=

7

16
because 7 of the 16 girls prefer red

This is the probability that a randomly selected girl prefers red

• P(G | R) =
7/34

17/34
=

7

17
because 7 of the 17 kids who prefer red are girls.

This is the probability that a randomly selected kid who prefers red is a girl.

• P(B | G) =
0

16/34
= 0 because none of the girls are boys.

This is the probability that a randomly selected girl is a boy.

One important use of conditional probability is as a tool to calculate the probability of an intersection.

Let A and B be events with non-zero probability. Then

P(A ∩B) = P(A) · P(B | A)

= P(B) · P(A | B) .

This follows directly from the definition of conditional probability by a little bit of algebra and can be
generalized to more than two events.
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Example 3.4.3. Q. If you roll two standard dice, what is the probability of doubles? (Doubles is when the
two numbers match.)

A. Let A be the event that we get a number between 1 and 6 on the first die. So P(A) = 1. Let B be the event that
the second number matches the first. Then the probability of doubles is P(A∩B) = P(A) ·P(B | A) = 1 · 1

6 = 1
6

since regardless of what is rolled on the first die, 1 of the 6 possibilities for the second die will match it.

Example 3.4.4. Q. A 5-card hand is dealt from a standard 52-card deck. What is the probability of getting
a flush (all cards the same suit)?

A. Imagine dealing the cards in order. Let Ai be the event that the ith card is the same suit as all previous
cards. Then

P(flush) = P(A1 ∩A2 ∩A3 ∩A4 ∩A5)

= P(A1) · P(A2 | A1) · P(A3 | A1 ∩A2) · P(A4 | A1 ∩A2 ∩A3)

·P(A5 | A1 ∩A2 ∩A3 ∩A4)

= 1 · 12

51
· 11

50
· 10

49
· 9

48

Example 3.4.5. Q. In a bowl are 4 red Valentine hearts and 2 blue Valentine hearts.

If you reach in without looking and select two of the Valentines, let X be the number of blue Valentines. Fill
in the following probability table.

value of X 0 1 2

probability

A. P(X = 2) = P(first is blue and second is blue) = P(first is blue)·P(second is blue | first is blue) = 2
6 ·

1
5 = 2

30 .
Similarly P(X = 0) = P(first is red and second is red) = P(first is red) · P(second is red | first is red) = 4

6 ·
3
5 =

12
30 Finally, P(X = 1) = 1− P(X = 0)− P(X = 2) = 1− 14

30 = 16
30

We can represent this using a tree diagram as well.

♥
♥1

5

♥4
5

2
6

♥
♥2

5

♥3
5

4
6

2
6 ·

1
5 = 2

30

2
6 ·

4
5 = 8

30

4
6 ·

2
5 = 8

30

4
6 ·

3
5 = 12

30

The edges in the tree represent conditional probabilities which we can multiply together to the probability that
all events on a particular branch happen. The first level of branching represents what kind of Valentine is
selected first, the second level represents the second selection.
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Example 3.4.6. Q. Suppose a test correctly identifies diseased people 99% of the time and correctly identifies
healthy people 98% of the time. Furthermore assume that in a certain population, one person in 1000 has the
disease. If a random person is tested and the test comes back positive, what is the probability that the person
has the disease?

A. We begin by introducing some notation. Let D be the event that a person has the disease. Let H be the
event that the person is healthy. Let + be the event that the test comes back positive (meaning it indicates
disease – probably a negative from the perspective of the person tested). Let − be the event that the test is
negative.

• P(D) = 0.001, so P(H) = 0.999.

• P(+ | D) = 0.99, so P(− | D) = 0.01.

P(+ | D) is called the sensitivity of the test. (It tells how sensitive the test is to the presence of the
disease.)

• P(− | H) = 0.98, so P(+ | H) = 0.02.

P(− | H) is called the specificity of the test.

• P(D | +) =
P(D ∩+)

P(+)

=
P(D) · P(+ | D)

P(D ∩+) + P(H ∩+)

=
0.001 · 0.99

0.001 · 0.99 + 0.999 · 0.02
= 0.047.

A tree diagram is a useful way to visualize these calculations.

H

+0.02

−0.980.999

D

+0.99

−0.01

0.001

0.02

0.979

0.00099

0.00001

This low probability surprises most people the first time they see it. This means that if the test result of a
random person comes back positive, the probability that that person has the disease is less than 5%, even
though the test is “highly accurate”. This is one reason why we do not routinely screen an entire population for
a rare disease – such screening would produce many more false positives than true positives.

Of course, if a doctor orders a test, it is usually because there are some other symptoms. This changes the a
priori probability that the patient has the disease.
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3.4.1 Independence

Let A and B be two events such that P(B) = P(B | A). Such events are called independent.

When events are independent, then P(A and B) = P(A) · P(B | A) = P(A) · P(B). This makes probability
calculations much simpler – but it only applies for independent events.

Example 3.4.7. Q. What is the probability of rolling double sixes with standard 6-sided dice?

A. Let A be the event that the first die is a 6 and let B be the event that the second die is a 6. Since A and B
are independent, P(A and B) = P(A) · P(B) = 1

6 ·
1
6 = 1

36 .

Example 3.4.8. Q. What is the probability of flipping a coin five times and getting 5 heads?

A. Since each coin toss is independent of the others, the probability of getting five heads is the product of the
probabilities of each coin coming up heads:

P(5 heads in 5 flips) = (0.5)5 = 0.031

Example 3.4.9. Q. A manufacturer claims that 99% of its parts will still be functioning properly two years
after purchase. If you purchase 10 of these parts, what is the probability that all 10 of them are still functioning
properly two years later (assuming the manufacturer’s claim is correct)?

A. Let Gi be the event that part i is still functioning properly after two years. We want to calculate

P(G1 and G2 and · · · and G10) .

If we assume the lifetimes of the parts are independent, then

P(G1 and G2 and · · · and G10) = .99 · .99 · .99 · · · .99 = .9910︸ ︷︷ ︸
10 of these

= 0.904 .

The independence assumption may or may not be valid. That depends on the manufacturing process. For
example, if the primary way a part goes bad is that the package is dropped during shipping, then if you by a
box of 10 and the first part is bad, they will all be bad. And if the box was handled carefully and never dropped,
and the first part used is good, they will likely all be good. So in that extreme case, the probability that all 10
are functioning properly after two years is 99%.
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3.5 Exercises

3.1 Amy is a 92% free throw shooter. If she shoots 100 free throws after practice, what is the probability that
she makes at least 95 of them? Use simulation to estimate this probability.

(You can use rflip() to simulate shooting free throws. The prob argument lets you set the probability. In this
case, you need to set it to 0.92. Then think of a head as a made free throw and a tail as a missed free throw.)

3.2

a) Use simulation to estimate the probability of rolling a difference of 2 when rolling two fair six-sided dice.

b) Make a histogram showing the results for all of the possible differences.

3.3 Use simulation to estimate the probability that when dealing 5 cards from a standard (well-shuffled) deck
of 52 cards all five are diamonds.

You can simulate the deck of cards using the numbers 1 through 52 and consider the numbers 1 through 13 to
be the diamonds. Instead of using resample(), which would allow you to get the same card more than once,
we need to use sample(), which does not. (You can also use deal() which does the same thing.)

sample(1:52, 5)

## [1] 10 38 43 25 37

sample(1:52, 5)

## [1] 19 15 36 24 31

deal(1:52, 5)

## [1] 46 43 20 29 40

deal(1:52, 5)

## [1] 17 24 10 11 37

There is another way to make the calculation, using the function sum(). R can tell you how many cards are
below 14 using sum() because R turns TRUE into 1 and FALSE into 0 when you do a sum.
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sum( sample(1:52, 5) < 14 )

## [1] 2

sum( sample(1:52, 5) < 14 )

## [1] 0

sum( sample(1:52, 5) < 14 )

## [1] 1

You can use do() to do this many times. (Three is not manyWe just do a small number here for illustration
purposes.)

do(3) * sum( sample( 1:52, 5 ) < 14 )

## sum
## 1 0
## 2 0
## 3 1

3.4 Parts in a manufacturing plant go through two quality control checks before they are shipped. 99% of parts
pass inspection A and 98% parts pass inspection B. 0.5% fail both inspections.

What percentage of parts pass both inspections?

3.5 Let X be the sum of the results of rolling two fair six-sided dice.

a) What is P(X is even and X < 5)?

b) What is P(X is even or X < 5)?

3.6 Let Y be the difference between the larger and smaller number when two fair dice are rolled. (So if you
roll a 2 and a 4, then the value of Y is 2.)

a) What is P(Y = 2)?

b) What are the other possible values of Y ?

c) Calculate the probability for each possible value of Y and put those values in a table.

3.7 For the probabilities below, you may assume the that for each birth, the probability of having a boy or a
girl is 1/2 and that each birth is independent of other births.
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a) Suppose a family has three kids. What is the probability that at least one of the kids is a boy?

b) Suppose a family has three kids, at least one of which is a girl. Now what is the probability that at least
one of the kids is a boy?

c) Suppose a family has three kids, at least two of which are girls. Now what is the probability that at least
one of the kids is a boy?

3.8 A device is assembled from two primary parts. 2% of the first type of part are defective and 3% of the
other type of part are defective. The device only functions properly if both parts are functioning properly.

a) What assumption do you need to make to calculate the probability that a device assembled in this way
will function properly? Is it a reasonable assumption in this situation? Explain.

b) What is the probability that that a device assembled in this way will function properly?

3.9 In the situation of Example 3.4.6, how does the answer change if the baseline probability of having the
disease is 1/10 instead of 1/1000? (This might be the case if a person is exhibiting symptoms, for example.)

3.10 According to the CDC, “Compared to nonsmokers, men who smoke are about 23 times more likely to
develop lung cancer and women who smoke are about 13 times more likely.” According to the American Lung
Association: “In 2008, 21.1 million (18.3%) women smoked in the United States compared to 24.8 million (23.1%)
men.”

a) If you learn that a person is a smoker and no nothing else about the person, what is the probability that
the person is a woman?

b) If you learn that a woman has been diagnosed with lung cancer, and you know nothing else about her,
what is the probability that she is a smoker?

c) If you learn that a man has been diagnosed with lung cancer, and you know nothing else about him, what
is the probability that he is a smoker?

3.11 A manufacturing plant has kept records that show that the number of parts produced each day and on
the proportion of parts that are defective.

Monday Tuesday Wednesday Thursday

Proportion of weekly production 20% 25% 28% 27%

Rate of defective parts 2% 1.5% 1% 3%

a) If you order a part from this company, what is the probability that it was produced on a Monday or a
Thursday?

b) If you order a part from this company and it is defective, what is the probability that it was produced on
a Monday or a Thursday?
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c) If you order a part from this company and it functions properly, what is the probability that it was
produced on a Monday or Thursday?

Express your answers to 3 significant digits and avoid internal rounding.

3.12 An engineer orders a shipment of 100 indentical parts. Before accepting the shipment, he tests three of
them. If the they all test good, he accepts the entire shipment. If any of them tests bad, he rejects the shipment.

Given the good price he has gotten on these parts, the engineer would be satisfied if at least 95% of the parts
are good.

a) Suppose that there are 5 bad parts in the shipment. What is the probability that the shipment is rejected
(even though the engineer would actually have been satisfied with the shipment)?

b) Suppose that there are 10 bad parts in the shipment. What is the probability that the shipment is accepted
(even though the engineer would not be satisfied with this shipment)?

3.13 The blue M&M was introduced in 1995. Before then, the color mix in a bag of plain M&Ms was 30%
Brown, 20% Yellow, 20% Red, 10% Green, 10% Orange, 10% Tan. Afterward it was 24% Blue , 20% Green,
16% Orange, 14% Yellow, 13% Red, 13% Brown.

A friend of mine has two bags of M&Ms, and he tells me that one is from 1994 and one from 1996. He won’t
tell me which is which, but he gives me one M&M from each bag. One is yellow and one is green. What is the
probability that the yellow M&M came from the 1994 bag?
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4
Random Variables

random variable a random process that results in a number

We have already seen notation for and a few examples of random variables. In this chapter we will learn a bit
more about random variables. We will focus our attention on two types of random variables: discrete random
variables and continuous random variables.1

4.1 Discrete Random Variables

A discrete random variable takes on values from a discrete set of possibilities, typically either a finite set or a
subset of the integers. Here are some examples.

1. If we roll a die and record the number, there are six possible values, so the random variable is discrete.

2. If we keep flipping a coin until we get a head and record the number of coin tosses, then the possible
values of the random variable are 1, 2, 3, . . . This is also a discrete random variable.

For each of the possible values of a discrete random variable, there is some probability of that value occuring.
So to specify a discrete random variable, we need to specify those probabilities. When there are only a small
number of possible value, we can do this with a table.

value of X 0 1 2

probability 0.2 0.5 0.3

This is really just one way of describing a function, called the probability mass function (or pmf). The pmf
satisfies

f(x) = P(X = x)

Sometimes instead of providing a table, we will be able to specify the pmf using a formula. For example, we
could define a pmf g by

g(y) = (2− |1− y|)/4 for y ∈ {0, 1, 2}

which is the same as specifying g with the following table.
1There are important examples of random variables that are neither discrete nor continuous.
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value of Y 0 1 2

probability 0.25 0.5 0.25

Here’s one more example. Let W be a random varaible that can take on any integer value and has pmf given
by

h(w) =

(
1

2

)w+1

for w = 0, 1, 2, 3, . . .

So, for example, P(W = 2) = h(2) =
(

1
2

)3
= 1

8 .

Probabilities can be obtained from the pmf by adding:

• P(X > 0) = 0.5 + 0.3− 0.8

• P(Y > 0) = 0.5 + 0.25

• P(W > 0) = 1
4 + 1

8 + 1
16 + · · · = 1

2

• P(W > 0) = 1− P(W = 0) = 1− 1
2 = 1

2

The only restrictions on a pmf are that

1. the values must all be non-negative, and

2. the sum (over all possible values of the random variable) must be 1.

That way the probabilities will behave the way probabilities should.

Example 4.1.1. Q. Amy is a 92% free throw shooter. We watch her take shots until she misses and let X be
the number of shots. What is the pmf for X?

A. This time our table would be infinite (since there is no limit to how many consecutive free throws Amy might
make), so we won’t be able to write the whole table down. But we can work out the first few probabilities:

• f(0) = P(X = 0) = 0.08. (She has to miss the first shot.)

• f(1) = P(X = 1) = (0.92)(0.08). (She has to make the first and miss the second.)

• f(2) = P(X = 2) = (0.92)2(0.08). (She has to make the first two, then miss the third.)

At this point, we see there is a general pattern that allows us to write down an algebraic form for the pmf:

f(x) = P(X = x) = (0.92)x−1(0.08)

where x is a positive integer. (If x is not an integer, or x < 1, then f(x) = 0, since those values are not
possible.)

4.2 Continuous Random Variables

4.2.1 Density histograms, density plots, density functions

A histogram is a simple picture describing the “density" of data. Histogram bars are tall in regions where there
is more data – i.e., where the data are more “dense”.
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library(alr4)
gf_histogram( ~ Duration, data = oldfaith)
gf_dhistogram( ~ Duration, data = oldfaith)
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The density scale is the same scale that is used by gf_dens() and gf_density(), and it is the default scale for
histograms created using gf_dhistogram().

library(alr4)
gf_dhistogram( ~ Duration, data = oldfaith, binwidth = 20, center = 110) %>%
gf_dens( ~ Duration, data = oldfaith)
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The density scale is chosen so that the area of each rectangular bar (width times height) is equal to the proportion
of the data set represented by the rectangle.

Example 4.2.1. Q. Use the histogram of Old Faithful eruption times to estimate the proportion of eruptions
that last between 100 and 120 seconds.

A. In our histogram of Old Faithful eruption durations, the bar corresponding to the bin from 100–120 appears
to have a height of about 0.09. That gives an area of 0.18 and indicates that approximately 18% of the eruptions
last between 100 and 120 seconds.

tally( ~ ( 100 < Duration & Duration <= 120), data = oldfaith, format = "prop" )

## (100 < Duration & Duration <= 120)
## TRUE FALSE
## 0.1889 0.8111

The key idea behind the density scale can be expressed as
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Probability = area

This association of area with probability means that the total area of all the bars will always be equal to 1 if
we use the density scale.

It also provides us with a way to describe a distribution with a mathematical function.

Let f be a function such that
1. f(x) ≥ 0 for all x,

2.
∫ ∞
−∞

f(x) dx = 1.

Then f is called a density function (or probability density function, abbreviated pdf) and describes a
continuous random variable X such that

P(a ≤ X ≤ b) =

∫ b

a

f(x) dx .

Example 4.2.2. Let f be defined by

f(x) =

{
1− |x| x ∈ [−1, 1]

0 otherwise

Show that f is a density function. Let X be the associated random variable, and compute the following
probabilities:

1. P(X ≤ 0)

2. P(X ≤ 1)

3. P(X ≤ 1
2 )

4. P(− 1
2X ≤

1
2 )

A. While we could set up integrals for these, it is easier to solve them using geometry.2

f <- makeFun( (1 - abs(x)) * (abs(x) <= 1) ~ x )
gf_fun( f(x) ~ x, xlim = c(-1.5, 1.5) )

0.00

0.25

0.50

0.75

1.00

−1 0 1

x

y

2R cleverly turns TRUE and FALSE into 1 and 0 when you use them in arithmetic expressions. The definition of f() makes use
of this conversion to simplify specifying the cases.
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The entire area under the curve can be found as the area of a triangle with base 2 and height 1.∫ ∞
−∞

f(x) dx =

∫ 1

−1

f(x) dx =
1

2
· 2 · 1 = 1

This implies that f is a density function.

1. P(X ≤ 1) =
∫ 1

−∞ f(x) dx =
∫ 1

−1
f(x) dx = 1

2. P(X ≤ 1
2 ) =

∫ 1/2

−∞ f(x) dx =
∫ 1/2

−1
f(x) dx = 1− 1

2 ·
1
2 ·

1
2 = 7

8

3. P(− 1
2 ≤ X ≤

1
2 ) =

∫ 1/2

−1/2
f(x) dx = 1− 2

8 = 3
4

We can also let R do (numerical) integration for us. There are two ways to do this. The first method uses the
integrate() function.

integrate( f, -Inf, 1 )

## 1 with absolute error < 9.2e-05

# this will be more accurate since we aren't asking R to approximate
# something that we already know is exactly 0
integrate( f, -1, 1)

## 1 with absolute error < 1.1e-14

integrate( f, -.5, .5 )

## 0.75 with absolute error < 8.3e-15

# if you just want the value without the text saying how accurate the approximation is
# here are two equivalent ways to get it
value(integrate( f, -.5, .5 )) # extract the value using val()

## [1] 0.75

integrate( f, -.5, .5 ) %>% value() # %>% is the "then" operator

## [1] 0.75

An alternative approach uses antiD() from the mosaic package.

F <- antiD( f(x) ~ x)
F(1) - F(-1) # total probability -- better be 1

## [1] 1

F(.5) - F(-1) # P( -1 <= X <= 0.5 )
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## [1] 0.875

F(.5) - F(-.5) # P( -.5 <= X <= .5 )

## [1] 0.75

4.2.2 Kernels

The kernel of a continuous random variable is a function that is a constant multiple of the pdf. The reason that
these are interesting is that any kernel can be converted into a pdf by dividing by this constant. In particular,
if ∫ ∞

−∞
k(x) dx = A ,

then k is the kernel of a random variable with pdf

f(x) =
k(x)

A
.

Example 4.2.3. Q. The kernel of a random variable is given by

k(x) = x2 [[x ∈ [0, 2]]] .

Determine the pdf.

A. First we determine the value of the integral ∫ ∞
−∞

k(x) dx .

k <- makeFun( x^2 * ( 0 <= x & x <= 2) ~ x )
plotFun(k(x) ~ x, xlim = c(-1,3))
integrate( k, 0, 2)

## 2.667 with absolute error < 3e-14

K <- antiD(k(x) ~ x, lower.bound = 0)
K(2)

## [1] 2.667

x

k(
x)

0

1

2

3

4

0 1 2
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Since the total area is 8/3, if k(x)
8/3 is the pdf.

4.2.3 Cumulative distribution functions

If X is a random variable, then the cumulative distribution function (cdf) for X, often denoted
FX , is the function defined by

FX(x) = P(X ≤ x)

That is, the output of the cdf reports the probability of being below a particular value.

For a continuous random variable, the cdf is a particular anti-derivative of the pdf. The derivative of the cdf is
the pdf.

Example 4.2.4. Continuing with our previous example, if we choose -1 as our lower endpoint, then the
anti-derivative will be the cdf.

f <- makeFun((1 - abs(x)) * (abs(x) <= 1) ~ x)
F <- antiD( f(x) ~ x, lower.bound = -1) # We can use -1 instead of -Inf here.
F(-1) # this should be 0 since we chose -1 as the lower bound.

## [1] 0

F(1) # P(X <= 1); should be 1

## [1] 1

F(.5) # P(X <= 0.5)

## [1] 0.875

F(.5) - F(-.5) # P( -0.5 <= X <= 0.5 )

## [1] 0.75

We have already seen that we can use a pdf f to calculate probabilities via integration, and that there is a
special anti-derivative of f called the cdf such that the cdf F satisfies

F (x) = P(X ≤ x)

This function can also be used to compute probabilities, since

P(a ≤ X ≤ b) =

∫ b

a

f(x) dx = F (b)− F (a)

Indeed, once we learn how to get the cdf function in R this will be our primary way to calculate probabilities in
applications.
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4.3 Mean and Variance

4.3.1 The mean of a random variable

The definition for the mean of a random variable will be motivated by the calculation of a mean of some data.

Example 4.3.1. Q. Suppose a student has taken 10 courses and received 5 A’s, 4 B’s, and 1 C. Using the
traditional numerical scale where an A is worth 4, a B is worth 3, and a C is worth 2, what is this student’s
GPA (grade point average)?

A. The first thing to notice is that 4+3+2
3 = 3 is not correct. We cannot simply add up the values and divide by

the number of values. Clearly this student should have a GPA that is higher than 3.0, since there were more
A’s than C’s.

Consider now a correct way to do this calculation:

GPA =
4 + 4 + 4 + 4 + 4 + 3 + 3 + 3 + 3 + 2

10

=
5 · 4 + 4 · 3 + 1 · 2

10

=
5

10
· 4 +

4

10
· 3 +

1

10
· 2

= 4 · 5

10
+ 3 · 4

10
+ 2 · 1

10
= 3.4 .

The key idea here is that the mean is a sum of values times probabilities.

mean =
∑

value · probability

For a discrete random variable this translates to

E(X) =
∑

xf(x)

where the sum is taken over all possible values of X.

The mean of a random variable also goes by another name: expected value. We can denote the mean of X
by either µX or E(X).

Example 4.3.2. Let X be discrete random variable with probablilities given in the table below.

value of X 0 1 2

probability 0.2 0.5 0.3

Q. What is the mean (expected value) of X?

A. E(X) = 0 · 0.2 + 1 · 0.5 + 2 · 0.3 = 0.5 + 0.6 = 1.1 This value reflects the fact that the random variable is
larger than 1 a bit more often than it is less than 1.

Example 4.3.3. A local charity is holding a raffle. They are selling 1000 raffle tickets for $5 each. The owners
of five of the raffle tickets will win a prize. The five prizes are valued at $25, $50, $100, $1000, and $2000. Let
X be the value of the prize associated with a random raffle ticket (0 for non-winning tickets). Then:

• P(the ticket wins a prize) = P(X > 0) = 5/1000.
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• P(the ticket wins the grand prize) = P(X = 2000) = 1/1000.

• P(the ticket wins a prize worth more than $75) = P(X > 75) = 3/1000.

The expected value of a ticket is

0 · 995

1000
+ 25 · 1

1000
+ 50 · 1

1000
+ 100 · 1

1000
+ 1000 · 1

1000
+ 2000 · 1

1000

25 * .001 + 50 * 0.001 + 100 * 0.001 + 1000 * 0.001 + 2000 * 0.001

## [1] 3.175

# R can help us set up this sum:
sum(c(25, 50, 100, 1000, 2000) * 0.001)

## [1] 3.175

When working with a continuous random variable, we replace the sum with an integral and replace the proba-
bilities with our density function to get the following definition:

E(X) = µX =

∫ ∞
−∞

xf(x) dx

If you recall doing center of mass problems you may recognize this integral as the first moment. (For pdfs, we
don’t need to divide by the “mass” because the total “mass” is the area under the curve, which will always be 1
for a random variable).

Note: It is possible that the integral used to define the mean will fail to converge. In that case, we say that the
random variable has no mean or that the mean fails to exist.3

Example 4.3.4. Q. Compute the mean of our triangle distribution from Example 4.2.2.

A. We simply compute the integral from the definition.

E(X) =

∫ 1

−1

xf(x) dx

=

∫ 0

−1

x(x− 1) dx+

∫ 1

0

x(1− x) dx

=

∫ 0

−1

x2 − x) dx+

∫ 1

0

x− x2) dx

=
x3

3
− x2

2

∣∣∣∣0
−1

+
x2

2
− x3

3

∣∣∣∣1
0

=
1

3
− 1

2
+

1

2
− 1

3
= 0

This isn’t surprising, by symmetry we would expect this result.
3Actually, we will require that

∫∞
∞ |x|f(x) dx converges. If this integral fails to converge, we will also say that the distribution

has no mean.
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We could also calculate this numerically in R:

f <- makeFun( (1 - abs(x)) * (abs(x) <= 1) ~ x)
xf <- makeFun( x * f(x) ~ x )
integrate(xf, -1, 1)

## 0 with absolute error < 3.7e-15

F <- antiD( x * f(x) ~ x, lower.bound = -1)
F(-1) # should be 0

## [1] 0

F(1)

## [1] 0

4.3.2 Variance

Arguing similarly, we can compute the variance of a discrete or continuous random variable using

• discrete: Var(X) = σ2
X =

∑
x(x− µX)2f(x) dx

• continuous: Var(X) = σ2
X =

∫∞
−∞(x− µX)2f(x) dx

These can be combined into a single definition by writing

Var(X) = E((X − µX)2) .

Note: It is possible that the sum or integral used to define the mean (or the variance) will fail to converge. In
that case, we say that the random variable has no mean (or variance) or that the mean (or variance) fails to
exist.4

Example 4.3.5. Q. Compute the variance of the triangle random variable from the Example 4.2.2.

A.

f <- makeFun( (1 - abs(x)) * (abs(x) <= 1) ~ x)
xxf <- makeFun( (x-0)^2 * f(x) ~ x )
integrate(xxf, -1, 1)

## 0.1667 with absolute error < 1.9e-15

G <- antiD( (x-0)^2 * f(x) ~ x)
G(1) - G(-1)

## [1] 0.1667

4Actually, we will require that
∫∞
∞ |x|f(x) dx converges and

∫∞
∞ |x|2f(x) dx converges. If these integrals (or the corresponding

sums for discrete random variables) fail to converge, we will say that the distribution has no mean (or variance).
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Some simple algebraic manipulations of the sum or integral above shows that

Var(X) = E(X2)− E(X)2 (4.1)

Example 4.3.6. Q. Compute the mean and variance of the random variable with pdf given by

g(x) =
3x2

8
[[x ∈ [0, 2]]] .

This is the pdf computed in Example 4.2.3.

A.

g <- makeFun( (3 * x^2/8 ) * (0 <= x & x <= 2) ~ x )
m <- antiD( x * g(x) ~ x, lower.bound = 0)(2) # all in one step instead of defining F or G
m

## [1] 1.5

v <- antiD( (x - m)^2 * g(x) ~ x, m = m, lower.bound = 0)(2)
v

## [1] 0.15

# here's the alternate computation
antiD( x^2 * g(x) ~ x, lower.bound = 0)(2) - m^2

## [1] 0.15

As with data, the standard deviation is the square root of the variance.

4.3.3 Quantiles

Quantiles solve equations of the form∫ x

−∞
f(t) dt = F (x) = P(X ≤ x) = q

where q is known and x is unknown. So the 50th percentile (which is the 0.5-quantile or the median) is the
number such that

P(X ≤ x) = 0.5 .

Example 4.3.7. Q. What is the 25th percentile of the triangle distribution in Example 4.2.2?

A. We need to solve for x in the following equation:

0.25 = P(X ≤ x) .
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We can do this by working out the integral involved:

0.25 =

∫ x

−1

1− |t| dt

=

∫ x

−1

1 + t dt

= t+ t2/2
∣∣x
−1

= x+ x2/2 + 1− 12/2

= x+ x2/2 + 1/2

0 = x2/2 + x+ 1/4

0 = 2x2 + 4x+ 1

So by the quadratic formula, x = 1
2

√
2− 1 = −0.293.

We can check this by evaluating the cdf.

x <- 1/2*sqrt(2) - 1
F(x)

## [1] 0

This could also be done geometrically by solving 1
2y

2 = 1
4 and letting x = −1 + y.

4.4 Some Important Families of Distributions

For now, we will consider only distributions of continuous random variables (probability density functions). We
will leave set aside discrete random variables (probability mass function) until quite a bit later in the course.

A family of distributions is a collection of distributions that share some common features. Typically, these are
described by giving a pdf that has one or more parameters. A parameter is simply a number that describes (a
feature of) a distribution that distinguishes between members of the family. In this section we describe briefly
some of the important distributions and how to work with them in R.

4.4.1 Triangle Distributions

The example distribution in the previous section is usually referred to as a triangle distribution (or triangular
distribution) because of the shape of its pdf. There are, of course, many triangle distributions. A triangle
distribution is specified with three numbers: a, the minimum; b, the maximum, and c, the location of the peak.
A triangle distribution is symmetric if the peak is halfway between the minimum and maximum (c = a+b

2 ).

When X is a random variable with a triangle distribution, we will write X ∼ Triangle(a, b, c). For many of
the most common distributions, R has several functions that facilitate computation with those distributions.
The triangle distributions are not in the base R distribution, but they can be added by requiring the triangle
package.

For each distribution, there are four functions in R that always start with a single letter followed by a name for
the distribution. In the case of the triangle distributions, these functions are
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Function What it does

dtriangle(x,a,b,c) Computes value of the pdf at x

ptriangle(q,a,b,c) Computes value of the cdf at x, i.e., P(X ≤ q)

qtriangle(p,a,b,c) Computes quantiles, that is a value q so that P(X ≤ q) = p

rtriangle(n,a,b,c) Randomly samples n values from the Triangle(a, b, c) distribution

Example 4.4.1. Q. Let X ∼ Triangle(0, 4, 1). Use R to answer the following questions.

1. Plot the pdf for X.

2. What is P(X ≤ 1)?

3. What is P(X ≤ 2)?

4. What is the median of X?

5. What is the mean of X?

A. The gf_dist() function in the ggformula package allows us to graph the pdf for any function R knows how
to work with in the standard way. For example, here is a plot of the pdf of a Triangle(0, 4, 1)-distribution.

library(triangle) # a package that knows about triangle distributions
gf_dist("triangle", a = 0, b = 4, c = 1)
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Here is the R code to answer the remaining questions.

ptriangle(1, 0, 4, 1) # P(X <= 4); notice that his is NOT 1/2

## [1] 0.25

ptriangle(2, 0, 4, 1) # P(X <= 4); also NOT 1/2

## [1] 0.6667

qtriangle(0.5, 0, 4, 1) # median is the 0.5-quantile

## [1] 1.551
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T <- antiD( x * dtriangle(x, 0,4,1) ~ x, lower.bound = 0)
T(4) # mean of X

## [1] 1.667

integrate( makeFun( x * dtriangle(x, 0,4,1) ~ x) , 0, 4)

## 1.667 with absolute error < 1.9e-14

4.4.2 Uniform Distributions

A uniform distribution is a described by a constant function over some interval. Its shape is a rectangle. This
makes it particularly easy to calculate probabilities for a uniform distribution. Despite its simplicity, the family
of uniform distributions has many applications.

We will let X ∼ Unif(a, b) denote that X is a uniform random variable on the interval from a to b. In R the
parameters a and b are given more meaningful names: min and max. We can use the following code to graph
the Unif(1, 4) distribution.

gf_dist("unif", min = 1, max = 4, xlim = c(-1, 6))

0.30

0.32

0.34

0.36

0.38

1 2 3 4

x

de
ns

ity

Notice that the width of the non-zero portion of the pdf is 3, so the height must be 1/3.

Probabilities involving uniform distributions are easily calculated using simple geometry, but R also provides
several functions for working with uniform probability distributions.

Function What it does

dunif(x,min,max) Computes value of the pdf at x

punif(x,min,max) Computes value of the cdf at x, i.e., P(X ≤ x)

qunif(p,min,max) Computes quantiles, that is a value of x so that P(X ≤ x) = q

runif(n,min,max) Randomly samples n values from the Unif(min, max) distribution

Notice the pattern to these names. They start with the same letters as the functions for the triangle distributions,
but replace triangle with unif. There are similar functions for all of the distributions in this chapter.

Example 4.4.2. Q. Let X ∼ Unif(1, 4). Use R to calculate the following values and check the values using
geometry:
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1. P(X ≤ 2)

2. the 80th percentile of the distribution

A.

punif(2,1,4) # P(X <= 2 )

## [1] 0.3333

(2-1) * 1/3 # P(X <= 2 ) using area

## [1] 0.3333

qunif(.8, 1,4) # 80th percentile

## [1] 3.4

We could also get the 80th percentile by solving the equation 1
3 (x − 1) = 0.8 From this we get x

3 = 0.8 + 1/3,
so x = 3(0.8 + 1/3) = 2.4 + 1 = 3.4.

4.4.3 Exponential Distributions

The exponential distributions are useful for modeling the time until some “event” occurs. The model is based
on the assumptions that

1. The probability of an event occurring in any small interval of time is proportional to the length of the
time interval. The constant of proportionality is the rate parameter, usually denoted by λ.

2. The probabilities of events occurring in two small non-overlapping intervals are independent.

Examples 4.4.3. Here are some situations that might be well modeled by an exponential distribution:

1. The time until the next radioactive decay event is detected on a Geiger counter

2. The time until a space satellite is struck by a meteor (or some other space junk) and disabled.

The model would be good if (over some time span of interest) the chances of getting struck are always the
same. It would not be such a good model if the satellite moves through time periods of relatively higher
and then relatively lower chances of being struck (perhaps because we pass through regions of more or
less space debris at different times of the year.)

3. The lifetime of some manufactured device.

This is a pretty simple model (we’ll learn better ones later) and most often is too simple to describe
the interesting features of the lifetime of a device. In this model, failure is due to some external thing
“happening to" the device; the device itself does not wear (or improve) over time.

We will let X ∼ Exp(λ) denote that X has an exponential distribution with rate parameter λ. The kernel of
such a distribution is

k(x;λ) = e−λx [[x ≥ 0]]
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Notice that the function describing this distribution is defined only for x-values that are real numbers greater
than or equal to zero (in mathematical notation, the interval [0,∞).) This interval is sometimes called the
“support" of the distribution. When using probability distributions to model data, it’s important to think
about whether the support of the distribution matches well with the range of possible values observed in the
data.

The exponential distribution function is a pretty easy function to integrate, but R provides the now familiar
functions to make things even easier.

Function What it does

dexp(x,rate) Computes value of the pdf at x

pexp(q,rate) Computes value of the cdf at x, i.e., P(X ≤ q)

qexp(p,rate) Computes quantiles, that is a value q so that P(X ≤ q) = p

rexp(n,rate) Randomly samples n values from the Exp(λ) distribution

gf_dist("exp", rate = 4)
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4.4.4 Gamma and Weibull Distributions

The Gamma and Weibull familities of distributions are generalizations of the exponential distribution. Each
family has two parameters, a rate parameter as in the exponential distribution, and an additional parameter
called the shape parameter (denoted by α below). The reciprocal of the rate parameter is called the scale
parameter. For the Gamma distribution, R lets us use either rate or scale (and the default is rate). For the
Weibull, we must use the scale.

distribution kernel

Gamma(α, λ) k(x) = xα−1e−λx [[x ≥ 0]]

Weibull(α, λ) k(x) = xα−1e−λx
α

[[x ≥ 0]]

Both families of distributions are supported on the interval [0,∞).) For the most part, we won’t use these
formulas in calculations, preferring to let R do the work for us. However, notice that each of these distributions
has a pdf that allows for relatively simple integration. For the Gamma distributions, we need to use integration
by parts (α − 1 times). For the Weibull distributions we can use a substitution: u = xα. In each case, when
α = 1 we get an exponential distribution.

The now familiar functions are available for each of these distributions.
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Function What it does

dgamma(x, shape, rate, scale = 1/rate) Computes value of the pdf at x

pgamma(q, shape, rate, scale = 1/rate) Computes value of the cdf at x, i.e., P(X ≤ q)

qgamma(p, shape, rate, scale = 1/rate) Computes quantiles, that is a value q so that P(X ≤ q) = p

rgamma(n, shape, rate, scale = 1/rate) Randomly samples n values from a Gamma distribution.

dweibull(x, shape, scale = 1/rate) Computes value of the pdf at x

pweibull(q, shape, scale) Computes value of the cdf at x, i.e., P(X ≤ q)

qweibull(p, shape, scale) Computes quantiles, that is a value q so that P(X ≤ q) = p

rweibull(n,shape,scale) Randomly samples n values from a Weibull distribution.

Like the exponential distributions, these distributions are skewed and only take on positive values. These
distributions arise in many applications, including as more general models for lifetime. As the pictures below
indicate, the shape and scale parameters are aptly named.

gf_dist("gamma", params = list(shape = 2, rate = 1), title = "Gamma(2,1)")
gf_dist("gamma", params = list(shape = 5, rate = 1), title = "Gamma(5,1)")
gf_dist("gamma", params = list(shape = 2, scale = 10), title = "Gamma(5,10)")
gf_dist("gamma", params = list(shape = 5, scale = 10), title = "Gamma(5,10)")
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gf_dist("weibull", params = list(shape = 2, scale = 1),title = "Weibull(2,1)")
gf_dist("weibull", params = list(shape = 5, scale = 1),title = "Weibull(5,1)")
gf_dist("weibull", params = list(shape = 2, scale = 10),title = "Weibull(2,10)")
gf_dist("weibull", params = list(shape = 5, scale = 10),title = "Weibull(5,10)")
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4.4.5 Normal Distributions

We come now to the most famous family of distributions – the normal distributions (also called Gaussian
distributions). These symmetric distributions have the famous “bell shape” and are described by two parameters,
the mean µ and the standard deviation σ. The pdf for a Norm(µ, σ) distribution is

distribution pdf

Norm(µ, σ) f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

µ − 3σ µ − 2σ µ − 1σ µ µ + 1σ µ + 2σ µ + 3σ

x

The inflection points of the normal distributions are always at µ− σ and µ+ σ.

Among the normal distributions is one special distribution – the standard normal distribution – which
has mean 0 and standard deviation 1. All other normal distributions are simply linear transformations of the
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standard normal distribution. That is, If Z ∼ Norm(0, 1) and Y = a + bX , then Y ∼ Norm(a, b). Conversely,
if Y ∼ Norm(µ, σ), then Z = Y−µ

σ ∼ Norm(0, 1).

As with the other distributions we have encountered, we have four functions that allow us to work with normal
distributions in R:

Function What it does

dnorm(x,mean,sd) Computes value of the pdf at x

pnorm(q,meand,sd) Computes value of the cdf at x, i.e., P(X ≤ q)

qnorm(p,mean,sd) Computes quantiles, that is a value q so that P(X ≤ q) = p

rnorm(n,mean,sd) Randomly samples n values from a normal distribution.

The 68-95-99.7 Rule

Also known as the “Empirical Rule", the 68-95-99.7 Rule provides a set of probability benchmarks for the normal
distributions because for any normal distribution:

• ≈ 68% of the normal distribution is between µ− σ and µ+ σ.

• ≈ 95% of the normal distribution is between µ− 2σ and µ+ 2σ.

• ≈ 99.7% of the normal distribution is between µ− 3σ and µ+ 3σ.

Example 4.4.4. Q. Before they were rescaled, SAT scores used to be approximately normally distributed
with a mean of 500 and a standard deviation of 100.

1. Approximately what percent of test takers scored between 400 and 600?

2. Approximately what percent of test takers scored above 600?

3. Approximately what percent of test takers scored below 300?

4. Approximately what percent of test takers scored between 400 and 700?

A.

1. 68%

2. Since 68% are bewteen 400 and 600, the other 32% must be outside that range, half above and half below.
So 16% are above 600.

3. Since 95% are between 300 and 700, the other 5% must be outside that range, half above and half below.
So 2.5% are below 300.

4. 16% are below 400 and 2.5% are above 700, so the remaining 81.5% must be between 400 and 700.

Of course, we can get more accurate results using R:

pnorm( 600, 500, 100) - pnorm(400, 500, 100)

## [1] 0.6827
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pnorm( 700, 500, 100) - pnorm(300, 500, 100)

## [1] 0.9545

pnorm( 300, 500, 100)

## [1] 0.02275

pnorm( 700, 500, 100) - pnorm(400, 500, 100)

## [1] 0.8186

The xpnorm() function will additionally draw pictures of the normal distribution with a portion of the distri-
bution shaded in.

xpnorm(700,500,100) - xpnorm(400, 500, 100)

##

## If X ~ N(500, 100), then

## P(X <= 700) = P(Z <= 2) = 0.9772

## P(X > 700) = P(Z > 2) = 0.02275

##

## If X ~ N(500, 100), then

## P(X <= 400) = P(Z <= -1) = 0.1587

## P(X > 400) = P(Z > -1) = 0.8413

##

## [1] 0.8186

z =  2

0.000

0.001

0.002

0.003

0.004

250 500 750

x

de
ns

ity

z =  −1

0.000

0.001

0.002

0.003

0.004

250 500 750

x

de
ns

ity

Example 4.4.5. We can use qnorm() to compute percentiles. For example, let’s calculate the 75th percentile
for SAT distributions.
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qnorm(.75, 500, 100)

## [1] 567.4

4.4.6 Beta Distributions

The Beta distributions have support on the interval (0, 1), so they can provide a model for proportions or other
quantities that are bounded between 0 and 1.5 The Beta distributions have two parameters, imaginatively called
shape1 and shape2. The kernel of the Beta distributions is a product of a power of x and a power of (1− x):

k(x;α, β) = xα−1(1− x)β−1 [[x ∈ [0, 1]]]

When α = β, the distribution is symmetric, and when α = β = 1, we have the Unif(0, 1)-distribution.

The two shape parameters provide a wide variety of shapes.

gf_dist("beta", params = list(shape1 = 2, shape2 = 2), title = "Beta(2,2)")
gf_dist("beta", params = list(shape1 = 2, shape2 = 0.9), title = "Beta(2,0.9)")
gf_dist("beta", params = list(shape1 = 4, shape2 = 2), title = "Beta(4,2)")
gf_dist("beta", params = list(shape1 = 0.9, shape2 = 0.85), title = "Beta(0.9,0.85)")
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5A more general version of the Beta distributions can do the same thing for quantities bounded by any two numbers. This more
general family of distributions has four parameters.
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Function What it does

dbeta(x,shape1,shape2) Computes value of the pdf at x

pbeta(q,shape1d,shape2) Computes value of the cdf at x, i.e., P(X ≤ q)

qbeta(p,shape1,shape2) Computes quantiles, that is a value q so that P(X ≤ q) = p

rbeta(n,shape1,shape2) Randomly samples n values from a Beta distribution.

4.4.7 Binomial Distributions

A binomial distribution is a discrete distribution with two parameters (n and p, or as R calls them size and
prob) describing a situation in which

1. Our random process consists of n identical sub-processes (called trials).

2. Each trial has one of two outcomes (traditionally called success and failure).

3. The probability of success is p for each trial.

4. The outcome of each trial is independent of the others.

The binomial random varialbe counts the number of successes.

Example 4.4.6.

1. If we flip a coin 100 times and let X be the number of heads, then X ∼ Binom(100, 0.5).

2. Amy is a 92% free throw shooter. If she attempts 50 free throws and we let Y be the number that she
makes, then Y ∼ Binom(50, 0.92) (assuming that each shot is independent of the others.6)

Here are some example binomial distributions. The distributions are symmetric when p = 0.5. For a fixed size
n, the distributions become more and more skewed as p gets closer to 0 or 1. For a fixed probability p, the
distributions become more and more symmetric as n gets larger.

gf_dist("binom", size = 10, prob = 0.5, title = "Binom(10, 0.5)")
gf_dist("binom", size = 10, prob = 0.05, title = "Binom(10, 0.05)")
gf_dist("binom", size = 100, prob = 0.5, title = "Binom(100, 0.5)")
gf_dist("binom", size = 100, prob = 0.05, title = "Binom(100, 0.05)")
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6Whether an individual shooter’s shots are independent or exhibit longer runs of “hot" and “cold" streaks that we would expect
under indpendence has been investigated by many people. The general conclusion seems to be that the independence assumption
matches reality pretty closely.
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The pmf for a binomial distribution is given by

f(x) =

(
n

x

)
px(1− p)n−x

where
(
n
x

)
= n!

x!(n−x)! is the binomial coefficient. As with the continuous distributions, we have our usual
functions available.

Function What it does

dbinom(x, size, prob) Computes value of the pmf at x

pbinom(q, size, prob) Computes value of the cdf at x, i.e., P(X ≤ q)

qbinom(p, size, prob) Computes quantiles, that is the smallest value of x so that P(X ≤ x) ≥ p

rbinom(n, size, prob) Randomly samples n values from a Binomial distribution.

4.4.8 Poisson Distributions

The Poisson distributions are generally used as models for counting “events" that happen in a specified amount
of time or space. If the probability of an event happening at any moment is the same and independent of events
happening at other moments, then the count of events in a fixed amount of time will be a Poisson random
variable. The Poisson family has one parameter – often denoted λ and called the rate parameter – which is the
average number of events that happen over the fixed amount of time or space we are observing.

Example 4.4.7.

1. Let X be the number of clicks of a Gieger counter in a 1 second interval. Since each click corresponds to
a radioactive decay event which we generally assume occur “at random” but according to some average
rate, a Poisson random variable would be a good model for this. The rate parameter would be the average
number of decay events per second.

2. If you stand on along a busy highway and count the number of red cars that go by in 30 minutes, a Poisson
random variable might be a good model. Sometimes you will get bunches of red cars or periods of time
with few or no red cars, that is just as a Poisson model predicts.

The Poisson distributions are skewed right, but become less and less skewed as the rate parameter increases.
Here are a few example plots.

gf_dist("pois", lambda = 1, title = "Pois(1)")
gf_dist("pois", lambda = 5, title = "Pois(5)")
gf_dist("pois", lambda = 15, title = "Pois(15)")
gf_dist("pois", lambda = 50, title = "Pois(50)")
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The pmf for a Pois(λ) random variable is

f(x) =
e−λλx

x!

and the functions in R for working with Poisson distributions are the following:

Function What it does

dpois(x, lambda) Computes value of the pmf at x

ppois(q, lambda) Computes value of the cdf at x, i.e., P(X ≤ q)

qpois(p, lambda) Computes quantiles, that is the smallest value of x so that P(X ≤ x) ≥ p

rpois(n, lambda) Randomly samples n values from a Poisson distribution.

4.5 Fitting Distributions to Data

Suppose we think a family of distributions would make a good model for some situation. How do we decide
which member of the family to use? The simple answer is that we should choose the one that fits “best." The
trick is deciding what it means to fit well. In fact there is more than one way to measure how well a distribution
fits a data set.

Example 4.5.1. We can use the following code to load a data set that contains three year’s worth of mean
hourly wind speeds (mph) in Twin Falls, ID. This kind of data is often used to estimate how much power could
be generated from a windmill placed in a given location.

Wind <-
read.csv("https://rpruim.github.io/Engineering-Statistics/data/stob/TwinfallsWind.csv")

head(Wind, 2)
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## date time speed
## 1 1/1/2010 0:00 2.24
## 2 1/1/2010 1:00 2.42

tail(Wind, 2)

## date time speed
## 26272 12/31/2012 22:00 3.88
## 26273 12/31/2012 23:00 5.04

gf_histogram( ~ speed, data = Wind, binwidth = 1 )
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As we can see, the distribution is skewed, but it doesn’t look like an exponential distribution would be a good
fit. Of the distributions we have seen, it seems like a Weibull or Gamma distribution would be a potentially
good choice. A Weibull model has often been used as a model for mean hourly wind speed, and the shape of
our histogram indicates that this is a reasonable family of distributions.

Q. Which Weibull distribution is the best model for our data?

A. The fitdistr() in the MASS package uses the method of maximum likelihood to fit univariate (one
variable) distributions.

fitdistr( Wind$speed, "weibull" )

## Error in fitdistr(Wind$speed, "weibull"): Weibull values must be > 0

For fitdistr() to fit a Weibull distribution, all of the data must be positive, but our data includes some 0’s.

tally( ~ (speed == 0), data = Wind)

## (speed == 0)
## TRUE FALSE
## 48 26225

Let’s see how small the smallest non-zero measurements are.
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min( ~ speed, data = Wind %>% filter(speed > 0))

## [1] 0.01

This may well be a simple rounding issue, since the wind speeds are recorded to the nearest 0.01 and 0.01 is the
smallest positive value. Let’s create a new variable that moves each value of 0 to 0.0025 and try again. Why
0.0025? If we think that 0.01 represents anything in the range 0.005 to 0.015, which would round to 0.01, then
0 represents anything in the range 0 to 0.005. 0.0025 is the middle of that range.

Wind <- Wind %>% mutate(speed2 = ifelse( speed > 0, speed, 0.0025))
fitdistr( Wind$speed2, "weibull" )

## shape scale
## 1.694423 6.650587
## (0.007958) (0.025552)

This says that the best fitting (in the sense of maximum likelihood) Weibull distribution is theWeibull(1.69, 6.65)-
distribution.

The gf_histogram() function has an option to overlay the distribution fit by fitdistr() so we can see how
good the fit is graphically.

gf_dhistogram( ~ speed2, data = Wind) %>%
gf_fitdistr( ~ speed2, data = Wind, dist = "weibull")
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This can be abbreviated a bit:

gf_dhistogram( ~ speed2, data = Wind) %>%
gf_fitdistr(dist = "weibull")
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gf_fitdistr() is inheriting the formula and data from gf_dhistogram().

Example 4.5.2. As an alternative, we could fit a Gamma distribution to the wind speed data.

fitdistr(Wind$speed2, "gamma")

## shape rate
## 2.495583 0.421178
## (0.020486) (0.003829)

gf_dhistogram( ~ speed2, data = Wind) %>%
gf_fitdistr(dist = "gamma" , color = ~ "Gamma") %>%
gf_fitdistr(dist = "weibull" , color = ~ "Weibull")
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By eye, it appears that the Gamma distribution fits this data set slightly better, but there may other reasons to
prefer the Weibull distribution. In fact, there has been a good deal of research done regarding which distributions
to use for wind speed data fitting. The answer to the question of which distributions should be used seems to
be that it depends on the purpose for your modeling: “The fact that different distributions excel under different
applications motivates further research on model selection based upon the engineering parameter of interest."
[MLVB11]

Example 4.5.3. 1986–87 was a good season for Michael Jordan, a famous former NBA basketball player.
Possible models for the points scored each game that season are normal, Weibull, and Gamma distributions.
The normal distributions might be a good choice if we think that the distributions is roughly symetric (very
good games are about the same amount above average as the very poor games are below average). Weibull
and Gamma distributions have the built in feature that scores cannot be negative and would allow for a skewed
distribution. The fitdistr() function in the MASS package can fit each of these.
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library(fastR2) # the Jordan8687 data set is in this package
fitdistr(Jordan8687$points, "normal")

## mean sd
## 37.0854 9.8640
## ( 1.0893) ( 0.7702)

fitdistr(Jordan8687$points, "weibull")

## shape scale
## 4.1228 40.7746
## ( 0.3455) ( 1.1517)

fitdistr(Jordan8687$points, "gamma")

## shape rate
## 12.4284 0.3351
## ( 1.9154) ( 0.0527)

We can use a histogram with overlaid density curve to see how well these fits compare to the data.

gf_dhistogram(~ points, data = Jordan8687, binwidth = 5) %>%
gf_fitdistr(dist = "dnorm", color = ~"normal") %>%
gf_fitdistr(dist = "dweibull", color = ~ "Weibull") %>%
gf_fitdistr(dist = "dgamma", color = ~ "Gamma")
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The three fits are similar, but not identical.

4.5.1 Maximum Likelihood

The fitdistr() function uses the maximum likelihood method to estimate distribution parameters. The
maximum likelihood method is one of the most commonly used estimation methods in all of statistics because
(1) it can be used in a wide range of applications, and (2) the resulting estimators have some some desirable
properties. Maximum likelihood estimation tries to choose the parameter values that maximize the likelihood
of the observed data.

First, let’s think about the “likelihood" of an individual observed data-point. The likelihood of the data-point is
just the probability density function (or probability mass function) for the distribution of interest, evaluated at
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the value observed in the data. The likelihood gives some indication of how frequently we’d expect to observe
this value, but it is not a probability (for one thing, likelihoods can exceed 1). The figure below illustrates that
the likelihood of observing a person 80 inches (6 feet, 8 inches) tall, if the person comes from a population whose
heights are Normally distributed with a mean of 68 inches and a standard deviation of 6 inches is about 0.009:
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Given a set of specific parameter values, the likelihood of an entire observed data-set can be calculated by
obtaining the value of the likelihood of each observed data-point, and summing these over all the observed data
points. Then, we can find the maximum likelihood parameter estimates by trying many candidate parameter
values until satisfied that we have found the ones that maximize the likelihood. (The numerical methods used
are usually a bit more sophisticated than “guessing lots of random candidate values", but we won’t get into the
details here. In some cases, it is also possible to write down a mathematical expression for the likelihood of the
data given the parameters, and maximize it analytically.)

We’ll illustrate the main ideas of maximum likelihood with a simple example.

Example 4.5.4. Michael has three dice in his pocket. One is a standard die with six sides, another has four
sides, and the third has ten sides. He challenges you to a game. Without showing you which die he is using,
Michael is going to roll a die 10 times and report to you how many times the resulting number is a 1 or a 2.
Your challenge is to guess which die he is using.

Q. Michael reports that 3 of the 10 rolls resulted in a 1 or a 2. Which die do you think he was using?

A. The probability of obtaining a 1 or a 2 is one of 1
2 ,

1
3 , or

1
5 , depending on which die is being used. Our data

are possible with any of the three dice, but let’s see how likely they are in each case.

• If P(roll 1 or 2) = 1
5 , then the probability of obtaining exactly Michael’s data is(

1

5

)3(
4

5

)7

= 0.06 .

(Whatever the order, there will be 3 events with probability 1/5 and 7 with probability 4/5. Since the
events are independent, we can multiply all of these probabilities.)

• If P(roll 1 or 2) = 1
3 , then the probability of obtaining exactly Michael’s data is(

1

3

)3(
2

3

)7

= 0.002 .

• If P(roll 1 or 2) = 1
2 , then the probability of obtaining exactly Michael’s data is(

1

2

)3(
1

2

)7

= 0.002 .
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Of these, the largest likelihood is for the case that P(roll 1 or 2) = 1
3 , i.e., for the standard, six-sided die. Our

data would be more likely to occur with that die than with either of the other two – it is the maximum likelihood
die.

In general, maximum likelihood calculations are harder because instead of having only 3 choices, there will
be infinitely many choices, and instead of having only one parameter, there may be multiple parameters. So
techniques from (multi-variable) calculus or numerical approximation methods are often used to maximize the
likelihood function. The fitdistr() function uses pre-derived formulas for some distributions and numerical
approximation methods for others. In some cases, you will get warning messages about attempts to apply a
function to values that don’t make sense (trying to take logs or square roots of negative numbers, zero in the
denominator, etc.) as the numerical approximation algorithm explores options in an attempt to find the best
fit. The help documenation for fitdistr() explains which distributions it can handle and what method is used
for each.

4.5.2 The method of moments

An easy (but sometimes fairly crude) way to estimate the parameters of a distribution is the method of moments.
You will often see this method used in engineering textbooks, espeically if they do not rely on software that
implements others methods (like the maximum likelihood method).

The basic idea is to set up a system of equations where we set the mean of the data equal to the mean of the
distribution, the variance of the data equal to the variance of the distribution, etc.7

To employ this method, we need to know the means and variances of our favorite families of distributions (in
terms of the parameters of the distributions). For all of the distributions we have seen, one can work out
formulas for the means and variances in terms of the parameters involved. These are listed in Table 4.1

Example 4.5.5. Let’s return to the wind speeds in Example 4.5.1. The formulas for the mean and variance
of a Weibull distribution involve the gamma function Γ(), which might be unfamiliar to you. So let’s simplify
things.

Theoretical properties and observations of wind speeds at other locations suggest that using a shape parameter
of α = 2 is often a good choice (but shape does differ from location to location depending on how consistent
or variable the wind speeds are). The Weibull distributions with α = 2 have a special name, they are called
the Rayleigh distributions. So Rayleigh(β) = Weibull(α = 2, β). In this case, from Table 4.1, we see that to
calculate the mean we need the value of Γ(1 + 1

2 ) = Γ(1.5) =
√
π/2.

gamma(1.5)

## [1] 0.8862

sqrt(pi)/2

## [1] 0.8862

From Table 4.1 we see that the mean of a Rayleigh(β)-distribution is

E(X) = β

√
π

2

Now we can choose our estimate β̂ for β so that

β̂

√
π

2
= x; .

7If our distribution has more than 2 parameters, we will need higher moments, which we will not cover here.
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That is,

β̂ =
2x√
π

x.bar <- mean(~speed, data = Wind)
x.bar

## [1] 5.925

beta.hat <- x.bar * 2 / sqrt(pi)
beta.hat

## [1] 6.686

So our method of moments fit for the data is a Rayleigh(6.69) = Weibull(2, 6.69)

Although the Rayleigh distributions are not as flexible as the Weibull or Gamma distributions, and although
maximum likelihood is generally preferred over the method of moments, the method of moments fit of a Rayliegh
distribution does have one advantage: it can be computed even if all you know is the mean of some sample
data. Sometimes, that is all you can easily get your hands on (because the people who collected the raw data
only report numerical summaries). You can find average wind speeds of for many locations online, for example
here: http://www.wrcc.dri.edu/htmlfiles/westwind.final.html

Example 4.5.6. For distributions with two parameters, we solve a system of two equations with two unknowns.
For the normal distributions this is particularly easy since the parameters are the mean and standard deviation,
so we get

µ̂ = x

σ̂2 = s2
x

x.bar <- mean(~speed, data = Wind); x.bar

## [1] 5.925

v <- var(~speed, data = Wind); v

## [1] 13.35

sqrt(v)

## [1] 3.653

So the method of moments suggests a Norm(5.93, 3.65) distribution. In this case, the method of moments and
maximum likelihood methods give the same results.
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fitdistr(Wind$speed, "normal")

## mean sd
## 5.92524 3.65320
## (0.02254) (0.01594)

But this doesn’t mean that the fit is particularly good. Indeed, a normal distribution is not a good choice for
this data. We know that wind speeds can’t be negative and we have other distributions (exponential, Weibull,
and Gamma, for example) that are also never negative. So choosing one of those seems like a better idea. The
following plot shows, as we expected, that the normal distribution is not a particularly good fit.

histogram(~speed, data = Wind, fit = "normal")

speed
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0.05

0.10
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It is important to remember that the best fit using a poor choice for the family of distriubtions might not be a
useful fit. The choice of distributions is made based on a combination of theoretical considerations, experience
from previous data sets, and the quality of the fit for the data set at hand.

4.6 Quantile-Quantile Plots

To this point we have looked at how well a distribution fits the data by overlaying a density curve on a histogram.
While this is instructive, it is not the easiest way to make a graphical comparison between a data set and a
theoretical distribution. Our eyes are much better and judging whether something is linear than they are at
judging whether shapes have a particular kind of curve. Furthermore, certain optical misperceptions tend to
cause people to exaggerate some kinds of differences and underestimate others.

Quantile-quantile plots offer an alternative approach. As the name suggests, the idea is to compare the quantiles
of our data to the quantiles of a theoretical distribution. These are then plotted as a scatter plot. Let’s go
through those steps with a small data set so we can see all the moving parts, then we’ll learn how to automate
the whole process using gf_qq().

4.6.1 Normal-Quantile Plots

The normal distributions are especially important for statistics, so normal-quantile plots will be our most
important example of quantile-quantiles plots. Also, special properties of the normal distributions make normal-
quantile plots especially easy and useful. We will illustrate the construction of these plots using a data set
containing Michael Jordan’s game by game scoring output from the 1986–87 basketball season.

Example 4.6.1. Let’s begin by forming a randomly selected sample of 10 basketball games.
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distribution

pdf or pmf mean variance

Triangle: Triangle(a, b, c)
2(x−a)

(b−a)(c−a)
if x ∈ [a, c] ,

2(b−x)
(b−a)(b−c) if x ∈ [c, b] ,

0 otherwise

a+ b+ c

3

a2 + b2 + c2 − ab− ac− bc
18

Uniform: Unif(a, b){
1
b−a if x ∈ [a, b] ,

0 otherwise
b+ a

2

(b− a)2

12

Standard normal: Norm(0, 1)
1√
2π
e−

1
2
z2 0 1

Normal: Norm(µ, σ)
1

σ
√

2π
· e−

1
2

( x−µ
σ

)2 µ σ2

Exponential: Exp(λ)

λe−λx 1/λ 1/λ2

Gamma: Gamma(α, λ = 1
β

)
λα

Γ(α)
xα−1e−λx α/λ = αβ α/λ2 = αβ2

Weibull: Weibull(α, β = 1
λ

)
α

βα
xα−1e−(x/β)α βΓ(1 + 1

α
) β2

[
Γ(1 + 2

α
)−

[
Γ(1 + 1

α
)
]2]

Beta: Beta(α, β)

Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α

α+ β

αβ

(α+ β)2(α+ β + 1)

Binomial: Binom(n, p)(
n

x

)
px(1− p)n−x np np(1− p)

Poisson: Pois(λ)

e−λλx

x!
λ λ

Table 4.1: Some common continuous distributions. Standard names for parameters that appear in several
distributions include rate (λ), shape (α), and scale (β). In the normal distributions, µ and σ are called mean
and sd in R, and in the uniform distirbutions, a and b are called min and max. The function Γ(x) that appears
in the formulas for the Weibull and Beta distributions is a kind of continuous extrapolation from the factorial
function. The gamma() function will calculate these values.
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set.seed(123) # so you can get the same sample if you like.
SmallJordan <- sample(Jordan8687, 10)
SmallJordan

## game points orig.id
## 31 31 27 31
## 79 79 53 79
## 51 51 43 51
## 14 14 40 14
## 67 67 40 67
## 42 42 49 42
## 50 50 33 50
## 43 43 38 43
## 81 81 61 81
## 25 25 43 25

probs <- seq(0.05, 0.95, by = 0.10)
probs

## [1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

observed <- sort(SmallJordan$points) # sorted observations
theoretical <- qnorm( probs, mean = mean(observed), sd = sd(observed) ) # theoretical quantiles

QQData <- data.frame(observed = observed, theoretical = theoretical)
QQData

## observed theoretical
## 1 27 26.64
## 2 33 32.58
## 3 38 36.11
## 4 40 38.94
## 5 40 41.47
## 6 43 43.93
## 7 43 46.46
## 8 49 49.29
## 9 53 52.82
## 10 61 58.76

If the observed data matched the theoretical quantiles perfectly, a scatter plot would place all the points on the
line with slope 1 passing through the origin.

gf_point( observed ~ theoretical, data = QQData, title = "Hand made QQ-plot" ) %>%
gf_fun( x ~ x, alpha = 0.6, color = "blue", linetype = "dashed")
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Even better, we don’t need to know the mean and standard deviation in advance, because all normal distributions
are linear transformations of the Norm(0, 1)-distribution. So our standard practice will be to compare our data
to the Norm(0, 1)-distribution. If X ∼ Norm(µ, σ), then X = µ+ σZ where Z ∼ Norm(0, 1), so a plot of X vs.
Z will have slope σ and intercept µ.

theoretical2 <- qnorm( probs, mean = 0, sd = 1 ) # theoretical quantiles from Norm(0,1)
QQData2 <- data.frame(observed = observed, theoretical = theoretical2)
gf_point(observed ~ theoretical, data = QQData2, title = "Hand made QQ-plot", xlab = "theoretical (z)" ) %>%
gf_abline(intercept = ~ mean(SmallJordan$points), slope = ~ sd(SmallJordan$points),

alpha = 0.5, color = "navy", data = NA) %>%
gf_hline(yintercept = ~ mean(SmallJordan$points), alpha = 0.5) %>%
gf_vline(xintercept = ~ 0, alpha = 0.5)
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Hand made QQ−plot

This whole process is automated by the gf_qq() function.

gf_qq( ~ points, data = SmallJordan, title = "Sub-sample" )
gf_qq( ~ points, data = Jordan8687, title = "Full data set" )
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4.6.2 Other distributions

Working with other distributions is similar, but most families of distributions don’t have a single “master
example" to which we can make all comparisons, so we need to pick a particular member of the family (either
by fitting or for some theoretical reason).8

Example 4.6.2. Let’s build a quantile-quantile plot for our wind speed data comparing to normal, gamma
and Weibull distributions. We can automate this, but we need to tell gf_qq() how to calculate the quantiles.

gf_qq( ~ speed2, data = Wind) # normal-quantile plot; normal is not a good model
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The normal model does not fit well, but both Gamma and Weibull are reasonable models:

fitdistr(Wind$speed2, "gamma")

## shape rate
## 2.495583 0.421178
## (0.020486) (0.003829)

fitdistr(Wind$speed2, "Weibull")

## shape scale
## 1.694423 6.650587
## (0.007958) (0.025552)

8There are a few other families of distributions that have a prototypical member such that all other members are a linear
transformation of the prototype. The exponential family is one such family.
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fittedqgamma <- makeFun( qgamma(p, shape = 2.496, rate = 0.421 ) ~ p )
fittedqweibull <- makeFun( qweibull(p, shape = 1.694, scale = 6.651) ~ p )
gf_qq( ~speed2, data = Wind, distribution = fittedqgamma )
gf_qq( ~speed2, data = Wind, distribution = fittedqweibull )
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4.7 Exercises

4.1 Let f(x) = 5/4− x3 on [0, 1].

a) Show that f is a pdf.

b) Calculate P(X ≤ 1
2 ).

c) Calculate P(X ≥ 1
2 ).

d) Calculate P(X = 1
2 ).

4.2 Repeat parts (2) – (4) of Example 4.4.1 using geometry rather than R.

4.3 Let k(x) = (1− x2) · [[x ∈ [−1, 1]]] =

{
1− x2 x ∈ [−1, 1]

0 otherwise
be the kernel of a continuous distribution.

a) Determine the pdf for this distribution.

b) Compute the mean and variance for this distribution

4.4 Let Y ∼ Triangle(0, 10, 4). Compute E(Y ) and the median of Y .

4.5 Let W ∼ Unif(0, 10). Compute E(W ) and Var(W ).

4.6

a) Let X ∼ Exp(4). Use R to compute E(X).

b) Let X ∼ Exp(10). Use R to compute E(X).

c) Let X ∼ Exp(1/5). Use R to compute E(X).

d) What pattern do you notice. Explain in terms of the definition of the exponential distribution why this
makes sense.

4.7 Use R to plot the pdf and compute the mean and variance of each of the following distributions.

a) Beta(2, 3)

b) Beta(20, 30)

c) Gamma(shape = 2, scale = 3)
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d) Weibull(shape = 2, scale = 3)

4.8 For each of the following distributions, determine the proportion of the distribution that lies between 0.5
and 1.

a) Exp(rate = 2)

b) Beta(shape1 = 3, shape2 = 2)

c) Norm(mean = 1, sd = 2)

d) Weibull(shape = 2, scale = 1/2)

e) Gamma(shape = 2, scale = 1/2)

4.9

a) Using Table 4.1 and the method of moments, fit an exponential distribution to the Twin Falls wind speed
data.

Wind <-
read.csv("https://rpruim.github.io/Engineering-Statistics/data/stob/TwinfallsWind.csv")

What is the estimated value of the rate parameter?

b) Now use fitdistr() to fit an exponential distribution using maximum likelihood.

c) How do the two estimates for the rate parameter compare?

d) How well does an exponential distribution fit this data?

4.10 A Gamma distribution can also be fit using the method of moments. Because there are two parameters
(shape and rate or shape and scale), you will need to solve a system of two equations with two unknowns.

a) Using Table 4.1 and the method of moments, fit a Gamma distribution to the Twin Falls wind speed data.
What are the estimated values of the shape and rate parameters?

b) How do the method of moments estimates for the parameters compare to the maximum likelihood estimates
from fitdistr()?

4.11 Sam has found some information about wind speed at a location he is interested in online. Unfortunately,
the web site only provides the mean and standard deviation of wind speed.

mean: 10.2 mph

standard deviation: 5.1 mph

a) Use this information and the method of moments to estimate the shape and rate parameters of a Gamma
distribution.
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b) In principal, we could do the same for a Weibull distribution, but the formulas aren’t as easy to work
with. Fit a Rayliegh distribution instead (i.e., a Weibull distribution with shape parameter equal to 2).

4.12 In 1964, a study was undertaken to see if IQ at 3 years of age is associated with amount of crying at
newborn age. In the study, 38 newborns were made to cry after being tapped on the foot, and the number of
distinct cry vocalizations within 20 seconds was counted. The subjects were followed up at 3 years of age and
their IQs were measured. You can load this data using

Baby <- read.csv("https://rpruim.github.io/Engineering-Statistics/data/BabyCryIQ.csv")
head(Baby)

## cry.count IQ
## 1 10 87
## 2 20 90
## 3 17 94
## 4 12 94
## 5 12 97
## 6 15 100

The cry.count variable records the number of distinct cry vocalizations within 20 seconds. Choose a family of
distributions to fit to this data and do the fit using fitdistr(). Also include a plot showing a histogram and
your fitted density curve.

4.13 Create normal quantile plots for the ages of patients in the HELPrct data set separated by substance.
(Getting separate or overlaid plots using gf_qq() works just like it does for other ggformula plots).

Comment on the plots.
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4.14 Match the normal-quantile plots to the histograms.
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4.15 Show that Var(X) = E(X2)− E(X)2 by showing that∫ ∞
−∞

(x− µX)2f(x) dx =

∫ ∞
−∞

x2f(x) dx− µ2
X

whenever f is a pdf and all the integrals involved converge.

4.16 The heights of 18–22 year olds in the US follow approximately normal distributions within each sex.
Estimated means and standard deviations appear in the table below.

mean standard deviation

women 64.3 in 2.6 in

men 70 in 2.8 in

Answer the following questions without using a computer or calculator (except for basic arithmetic).

a) If a woman is 68 inches tall, what is her z-score?

b) If a man is 74 inches tall, what is his z-score?

c) What is more unusual, a woman who is at least 68 inches tall or a man who is at least 74 inches tall?

d) Big Joe has decided to open a club for tall people. To join his club, you must be in the tallest 2.5% of
people of your sex. How tall must a woman be to join Big Joe’s club?

e) How tall must a man be to join Big Joe’s club?
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4.17 Use the information from the previous problem to answer the following questions.

a) What proportion of women are 5’10" or taller?

b) What proportion of men are 6’4" or taller?

c) If a man is in the 75th percentile for height, how tall is he?

d) If a woman is in the 30th percentile for height, how tall is she?
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5
Transformation and Combinations of Random Variables

We will often be interested in random variables that are formed by transformations or combinations other
random variables.

• If we roll to dice and let X and Y be the results on each die, then the sum is X + Y .

• If R is the radius of a circle, then A = πR2 is its area.

• If X and Y are the length and width of a rectangle, then the area is given by A = XY .

• If F is a temperature measured in degrees Fahrenheit, then C = 5
9 (F −32) = 5

9F −
160
9 is the temperature

in degrees Celsius. (Most other unit conversions are even simpler linear functions.)

• If W is weight in kg and H is height in meters, then B = W/H2 is bmi (body mass index)

• If X1, X2, . . . , Xn is a random sample, then the mean of the sample is

X =
X1 +X2 + · · ·Xn

n
=

1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn

More generally, we are interested in determining the distribution of the random variable Y if

Y = f(X1, X2, . . . , Xn)

and we already know the distributions of X1, X2, . . . , Xn. There are methods for working out the distribution
of Y in many such situations, Often it is possible to figure out the distribution of variables formed this way, but
the methods require more techniques of probability than we will develop in this course. We will generally be
satisfied with one of the following approaches:

1. Use simulations to approximate the new distribution.

2. Calculate (or estimate) the mean and variance of the new distribution, which is often much easier than
determining the pdf.

3. Rely on theorems that tell us the new distribution in certain special cases.

5.1 Simulations

In this section we will make use of the fact that each of our familiar distributions has a function in R that lets
us simulate randomly sampling data from that distribution.
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X <- runif(10000, 0,1)
Y <- runif(10000, 0,1)
S <- X + Y
P <- X * Y
gf_dhistogram( ~ X , main = "Sample from Unif(0,1)", binwidth = .05, center = 0.025)
gf_dhistogram( ~ Y , main = "Another sample from Unif(0,1)", binwidth = .05, center = 0.025)

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00

X

de
ns

ity

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00

Y
de

ns
ity

gf_dhistogram( ~ S , main = "Sum of two iid Unif(0,1) rvs", binwidth = 0.1, center = 0.05)
gf_dhistogram( ~ P , main = "Product of two iid Unif(0,1) rvs", binwidth = 0.05, center = 0.025)
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Independence Matters

It is important that we have created x and y independently. Independent random variables that have the same
distribution are called independent identically distributed (iid) random variables. As an illustration of an
extreme situation where the variables in our sum are not independent, let’s use the values of x in both roles:

S2 <- X + X
P2 <- X * X
gf_dhistogram( ~ S2 , main = "Sum of two non-iid Unif(0,1) rvs", binwidth = 0.1, center = 0.05)
gf_dhistogram( ~ P2 , main = "Product of two non-iid Unif(0,1) rvs", binwidth = 0.05, center = 0.025)
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Notice how different the resulting distributions are, especially for the sum.

Similar procedures can be used to give an approximate distribution for any combination of random variables
that we can simulate.

5.2 Propagation of Mean and Variance

Sometimes it is not necessary to know everything about a distribution. Sometimes knowing the mean or variance
suffices, and there are several common situations where the mean and variance are easy to calculate

5.2.1 Linear Transformations

The easiest of these is a linear transformation of a random variable.

If X is a random variable with known mean and variance, then

E(aX + b) = aE(X) + b , and

Var(aX + b) = a2 Var(X) .

These are actually pretty easy to prove from the definitions of mean and variance. (Just write down the integrals
and do some algebra.) But these results also match our intuition.

1. If we add or subtract a constant b, that increases or decreases every value by the same amount. This will
increase the mean by that amount, but does nothing to the variance (since everything is no more or less
spread out than it was before). This explains the +b in the first equation and why b does not appear at
all in the formula for the variance.

E(X + b) =

∫ ∞
−∞

(x+ b)f(x) dx =

∫ ∞
−∞

xf(x) dx+

∫ ∞
−∞

bf(x) dx = E(X) + b

Var(X + b) =

∫ ∞
−∞

(x+ b− (µ+ b))2f(x) dx =

∫ ∞
−∞

(x− µ)2f(x) dx = Var(X)

2. Now consider multiplying each value by the same amount a. This scales all the values by a, and hence
scales the mean by a as well. This also makes the values more or less spread out (more when |a| > 1, less

Math 241 : Pruim Last Modified: January 23, 2021



110 5. Transformation and Combinations of Random Variables

when |a| < 1). But it is the standard deviation – not the variance – that increases or decreases by the
factor |a|. The variance scales with a2.

E(aX) =

∫ ∞
−∞

axf(x) dx = a

∫ ∞
−∞

xf(x) dx = aE(X)

Var(aX) =

∫ ∞
−∞

(ax− aµ)2f(x) dx = a2

∫ ∞
−∞

(x− µ)2f(x) dx = a2 Var(X)

Example 5.2.1. Q. Suppose X has a mean of 5 and a standard deviation of 2. What are the mean and
standard deviation of 3X + 4?

A. E(3X + 4) = 3 E(X) + 4 = 3 · 5 + 4 = 19

Var(3X + 4) = 32 Var(X) = 32 · 22 = 36. So he standard deviation of 3X + 4 is
√

36 = 6. Notice that 6 = 2 · 3.

5.2.2 Sums

The most important combination of two random variables is a sum.

Let X and Y be two random variables with known means and variances, then

E(X + Y ) = aE(X) + E(Y ) , and
Var(X + Y ) = Var(X) + Var(Y ) , provided X and Y are independent.

That is,

• The expected value of a sum is the sum of the expected values.

• The variance of a sum is the sum of the variances – provided the variables are independent.

The independence condition for the variance rule is critical.1

Example 5.2.2. Q. Suppose X and Y are independent random variables with means 3 and 4 and standard
deviations 1 and 2. What are the mean and standard deviation of X + Y ?

A. E(X + Y ) = 3 + 4. Var(X + Y ) = 12 + 22 = 5, so SD(X + Y ) =
√

5 ≈ 2.236.

Example 5.2.3. Q. LetX ∼ Unif(0, 1) and Y ∼ Unif(0, 1) be independent random variables and let S = X+Y .
What are the mean and variance of S = X + Y ?

A. E(S) = E(X) + E(Y ) = 1
2 + 1

2 = 1. Var(S) = Var(X) + Var(Y ) = 1
12 + 1

12 = 1
6 .

Note that this matches the mean and variance of a Triangle(0, 2, 1)-distribution, since

0 + 2 + 1

3
= 1 ,

and
02 + 22 + 12 − 0 · 2− 0 · 1− 1 · 2

18
=

3

18
=

1

6
.

In fact, it can be shown that S ∼ Triangle(0, 2, 1).
1These results can be proved by setting up the appropriate integrals and rearranging them algebraically. In this case, one needs

to know a bit about joint, marginal, and conditional distributions, so for the sake of time we will omit the proofs.
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If we express the rule for variances in terms of standard deviations we get

The Pythagorean Theorem for standard deviations. If X and Y are independent random vari-
ables, then

SD(X + Y ) =
√

SD(X)2 + SD(Y )2 .

The independence condition plays the role of the right triangle condition in the usual Pythagorean
Theorem.

5.2.3 Linear Combinations

The results in the preceding sections can be combined and iterated to get results for arbitrary linear combinations
of random variables.

Let Y = a1X1 + a2X2 + · · ·+ akXk, then

E(Y ) = a1 E(X1) + a2 E(X1) + · · · ak E(Xk)

Var(Y ) = a2
1 Var(X1) + a2

2 Var(X1) + · · · a2
k Var(Xk) , provided X1, X2, . . . , Xk are independent.

Example 5.2.4. Q. Suppose the means and standard deviations of three independent random variables are
as in the table below.

variable mean standard deviation

X 100 15

Y 120 20

Z 110 25

Determine the mean and standard deviation of X + 2Y − 3Z.

A. The mean is 100 + 2(120)− 3(110) = 10.

The variance is 12 · 152 + 22 · 202 + (−3)2 · 252 = 7450, so the standard deviation is
√

7450 = 86.3.

5.3 Normal distributions are special

Normal distributions are special because
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Special Properties of Normal Distributions

1. Linear combinations of independent normal random variables are again normal.

2. Sums of iid random variables from any distribution are approximately normal provided the number
of terms in the sum is large enough.

This result follows from what is known as the Central Limit Theorem. The Central Limit
Theorem explains why the normal distributions are so important and why so many things have
approximately normal distributions.

This means that just knowing the mean and standard deviation tells us everything we need to know about the
distribution of the linear combination of normal random variables.

Example 5.3.1. Let X ∼ Norm(10, 2) and Y ∼ Norm(12, 4). If X and Y are independent, then

X + Y ∼ Norm(10 + 12,
√

22 + 42) = Norm(22, 4.47) .

Example 5.3.2. Let X ∼ Norm(10, 2) and Y ∼ Norm(12, 4). If X and Y are independent, then

X − Y ∼ Norm(10− 12,
√

22 + 42) = Norm(−2, 4.47) .

Example 5.3.3. Q. Use simulation to illustrate the previous two results.

A.

X <- rnorm(5000, 10, 2)
Y <- rnorm(5000, 12, 4)
Sum <- X + Y
Diff <- X - Y
fitdistr(Sum, "normal")

## mean sd
## 21.8897 4.4900
## ( 0.0635) ( 0.0449)

fitdistr(Diff, "normal")

## mean sd
## -1.91518 4.52236
## ( 0.06396) ( 0.04522)

gf_dhistogram(~ Sum) %>% gf_fitdistr(dist = "norm")
gf_dhistogram(~ Diff) %>% gf_fitdistr(dist = "norm")
gf_qq(~ Sum)
gf_qq(~ Diff)
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Example 5.3.4. Let Xi
iid∼ Unif(0, 1). Consider S =

∑12
i=1Xi. Since E(Xi) = 1

2 and Var(Xi) = 12

12 = 1
12

E(S) =
1

2
+

1

2
+ · · · 1

2
= 12 · 1

2
= 6

Var(S) =
1

12
+

1

12
+ · · · 1

12
= 12 · 1

12
= 1

Furthermore, the normal approximation for S is quite good:

X1 <- runif(5000,0,1); X2 <- runif(5000,0,1); X3 <- runif(5000,0,1)
X4 <- runif(5000,0,1); X5 <- runif(5000,0,1); X6 <- runif(5000,0,1)
X7 <- runif(5000,0,1); X8 <- runif(5000,0,1); X9 <- runif(5000,0,1)
X10 <- runif(5000,0,1); X11 <- runif(5000,0,1); X12 <- runif(5000,0,1)
S <- X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11 + X12
fitdistr(S, "normal")

## mean sd
## 6.009021 0.999654
## (0.014137) (0.009997)

gf_dhistogram(~S) %>% gf_fitdistr(dist = "norm")
gf_qq(~S)
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This means that S − 6 ≈ Norm(0, 1). This has been used in computer software as a relatively easy way to
simulate normal data given a good psuedorandom number generator for Unif(0, 1).

5.4 Estimating the Mean of a Population by Sampling

As important as data are in statistics, typically we are not interested in our data set, but rather in what we can
learn from our data about some larger situation. For example,

1. Quality assurance engineers test a few parts to make a decision about whether the production process is
working correctly for all the parts.

2. Automobile manufacturers crash a small number of vehicles to learn how their (other) cars might perform
in an accident.

3. Public opinion pollsters survey a (relatively) small number of people in order to learn about the opinions
of millions of people.

4. In order to estimate the number of dimes in a large sack of times, you decide to weigh the sack of dimes
and divide by the mean weight of a dime. To do this you need to know the mean weight of a dime. You
decide to carefully weigh 30 dimes and use those weights to estimate the mean weight of a dime.

We have now developed enough background to begin learning how this process works. We begin by introducing
some key terms:

population The collection of individuals, objects, or processes we want to know something about.

parameter A number that describes (a feature of) a population.

In typical applications, parameters are unknown and data are collected for the purpose of estimating
parameters.

sample The collection of individuals, objects, or processes we have data about. Ideally, the sample is a well
chosen subset of the population.

statistic A number that describes (a feature of) a sample.

sampling distribution The distribution of a statistic under random sampling.

The process of random sampling leads to a random sample, from which a statistic could be computed. Since
that number depends on a random process (sampling), it is a random variable. The sampling distribution
should not be confused with the distribution of an individual sample (nor with the distribution of the
population).
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Examples 5.4.1.

1. Quality assurance engineers test a few parts to make a decision about whether the production process is
working correctly for all the parts.

• population: all parts produced at the plant

• sample: the parts tested in the quality control protocol

• parameter: mean strength of all parts produced at the plant

• statistic: mean strength of the tested parts

2. Automobile manufacturers crash a small number of vehicles to learn how their (other) cars might perform
in an accident.

The tested cars are the sample. All of the cars produced are the population.

• population: all cars (of a certain model) produced

• sample: the small number of cars that were used in the crash test

3. Public opinion pollsters survey a (relatively) small number of people in order to learn about the opinions
of millions of people.

• population: all voters

• sample: people actually contacted

• parameter: proportion of all voters who will vote for candidate A

• statistic: proportion of sample who claim they will vote for candidate A

4. The mean weight of a dime can be estimated from the weights of 30 dimes.

• population: all dimes in the sack

• sample: 30 dimes actually weighed

• parameter: the mean weight of all the dimes in the sack

• statistic: the mean weight of the 30 dimes actually weighed.

The Central Limit Theorem. If X1, X1, . . . , Xn is an iid random sample (of some quantitative variable)
from a population with mean µ and standard deviation σ, then the sampling distribution of the sample
mean or sample sum of a large enough random sample is approximately normally distributed. In fact,

• X ≈ Norm(µ,
σ√
n

)

•
n∑
i=1

Xi ≈ Norm(µ, σ
√
n)

The approximations are better

• when the population distribution is similar to a normal distribution, and

• when the sample size is larger,

and are exact when the population distribution is normal.

The Central Limit Theorem is illustrated nicely in an applet available from the Rice Virtual Laboratory
in Statistics (http://onlinestatbook.com/stat_sim/sampling_dist/index.html).

Math 241 : Pruim Last Modified: January 23, 2021

http://onlinestatbook.com/stat_sim/sampling_dist/index.html


116 5. Transformation and Combinations of Random Variables

Important things to note about the Central Limit Theorem

1. There are three distributions involved: the population, individual sample(s), and the sampling distribution.

2. Large enough is usually not all that large (30–40 is large enough for most quantitative population distri-
butions you are likely to encounter).

3. We could already calculate the expected value and variance of means and sums, the new information in
the Central Limit Theorem is about the shape of the resulting sampling distribution.

4. The Central Limit Theorem requires a random sample. In situations where random sampling is not
possible, the Central Limit Theorem may still be approximately correct or other more complicated methods
may be required.

5.4.1 Estimands, estimates, estimators

When the goal of sampling is to estimate a parameter, it is handy to have the following terminology:

estimand A parameter we are trying to estimate. (Sometimes also called the measureand.)

estimate A statistic calculated from a particular data set and used to estimate the estimand. (Sometimes
called a measurement.)

estimator A random variable obtained by calculating an estimate from a random sample.

unbiased estimator An estimator for which the expected value is equal to the estimand. So an unbiased
estimator is “correct on average”.

In this section, our estimand is the mean of the population (mu) and our estimator is X, the mean of a random
sample. We will use x to denote the estimate computed from a particular sample; this is an estimate.

5.4.2 If we knew σ

Typically we will not know σ or µ. (To know them, one would typically need to know the entire population,
but then we would not need to use statistics to estimate µ because we would know the exact answer.) But for
the moment, let’s pretend we live in a fantasy world where we know σ.

Example 5.4.2. Suppose the standard deviation of the weight of all dimes in our sack of dimes is 0.03. If we
collect a random sample of 25 dimes, then

X ≈ Norm(µ,
σ√
n

) = Norm(µ, 0.006)

so
X − µ ≈ Norm(0,

σ√
n

) = Norm(0, 0.006) .

This means that

P(|X − µ| ≤ 0.006) ≈ 0.68

P(|X − µ| ≤ 0.012) ≈ 0.95

So we can be quite confident that our sample mean will be within 0.012 g of the µ, mean weight of all dimes in
the sack.
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Expressed in words, the claim is that 95% of random samples lead to a sample mean that is within 0.012 g of
the true mean. Of course, that means 5% of samples lead to a sample mean that is farther away than that. For
any given sample, there is no way to know if it is one of the 95% or one of the 5%.

5.4.3 Confidence Intervals (σ known)

The typical way of expressing this is with a confidence interval. The key idea is this:

If X is close to µ, then µ is close to X.

So an approximate 95% confidence interval is

x± 2SE = x± 2
σ√
n

or more precisely
x± 1.96

σ√
n

because

qnorm(0.975)

## [1] 1.96

Notice the switch from X to x. We used X when we were considering the random variable formed by taking
a random sample and computing the sample mean. X is a random variable with a distribution. When we are
considering a specific data set, we write x instead.

There is a subtly here that often gets people confused about the interpretation of a confidence interval. Although
95% of samples result in 95% confidence intervals that contain the true mean, it is not correct to say that a
particular confidence interval has a 95% chance of containing the true mean. Neither the particular confidence
interval nor the true mean are random, so no reasonable probability statement can be made about a particular
confidence interval computed from a particular data set.

5.4.4 Confidence Intervals (σ unknown)

The more typical situation is that σ is not known and needs to be estimated from the data. It has been known
for a long time that when randomly sampling from a normal population,

E

(
n∑
i=1

(Xi −X)2

)
= (n− 1)σ2

This means that

S2 =

∑n
i=1(Xi −X)2

n− 1

is an unbiased estimator of σ2.2 This explains the reason for the n − 1 in the denominator of the sample
variance.3

2In fact more is known. The distribution of S2 is a member of the Gamma family of distributions.
3Side note: the sample standard deviation is a biased estimator for the population standard deviation. (On average it will be

too small.)
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An obvious, but not quite correct solution to our unknown σ dilemma is to use s in pace of σ. In fact this was
routinely done until 1908 [Stu08], when William Gosset, publishing under the pseudonym Student, pointed out
that when sampling from a Norm(µ, σ) popoulation,

X − µ
σ/
√
n
∼ Norm(0, 1) but

X − µ
s/
√
n
∼ T(n− 1)

The new family of distributions (called Student’s t-distributions) are very similar to the normal distributions –
but “shorter and fatter”. This means that one must go farther into the tails of a t-distribution to capture the
central 95%.

gf_dist("norm", main = "Normal and T-distributions") %>%
gf_fun(dt(x,df = 2) ~ x, col = 'gray80') %>%
gf_fun(dt(x,df = 4) ~ x, col = 'gray60') %>%
gf_fun(dt(x,df = 8) ~ x, col = 'gray40') %>%
gf_fun(dt(x,df = 16) ~ x, col = 'gray20')

0.0

0.1

0.2

0.3

0.4

−2 0 2

x

de
ns

ity

The resulting confidence interval has the form

x± t∗
s√
n

5.4.5 Standard Error

The Central Limit Theorem tells us that (under certain condidtions), the standard deviation of the sampling
distribution for the sample mean is σ√

n
. Typically we don’t know σ so we estimate this quantity with s√

n
. To

avoid having to say “the estimated standard deviation of the sampling distribution”, we introduce a new term

standard error the estimated standard deviation of a sampling distribution

We will typically abbreviate standard error as SE. (Some authors use se.) Statistical software often includes
standard errors in output.
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Confidence intervals for the mean can now be expressed as

x± t∗SE

We will see other intervals that make use of the t-distributions. All of them share a common structure:

estimate± t∗SE

The value of t∗ needed for a 95% confidence interval is calculated similar to the way we calculated z∗, but we
need to know the degrees of freedom parameter for the t-distribution (n− 1 for this situation).

Example 5.4.3. Suppose a sample of 30 dimes has a mean weight of 2.258 g and a standard deviation of
0.022 g. We can calculate a 95% confidence interval as follows:

x_bar <- 2.258
t_star <- qt(0.975, df = 29); t_star

## [1] 2.045

SE <- 0.022/ sqrt(30); SE # standard error

## [1] 0.004017

ME <- t_star * SE; ME # margin of error

## [1] 0.008215

x_bar + c(-1,1) * ME

## [1] 2.250 2.266

If you have the data (and not just the the summary statistics x and s), R can automate this entire computation
for us with the t.test() function.

t.test( ~ mass, data = Dimes)

##
## One Sample t-test
##
## data: mass
## t = 560, df = 29, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 2.250 2.266
## sample estimates:
## mean of x
## 2.258
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confint(t.test( ~ mass, data = Dimes)) # just the CI without the other stuff

## mean of x lower upper level
## 1 2.258 2.25 2.266 0.95

5.4.6 Interpreting Confidence Intervals

Here is an illustration of 100 confidence intervals computed by sampling from a normal population with mean
µ = 100.

n = 25
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Notice that some of the samples have larger means (the dots) and some smaller means. Also some have wider
intervals and some narrower (because s varies from sample to sample). But most of the intervals contain the
estimand (100). A few do not.

In the long-run, 95% of the intervals should “cover” the estimand and 5% should fail to cover. 95% is referred
to as the confidence level or coverage rate.

As we can see, the estimand is not always contained in the confidence interval. But, in a way that we will be
able to make more formal later, a confidence interval is a range of plausible values for the estimand – values
that are consistent with the data in a probabilistic sense. The level of confidence is related to how strong the
evidence must be for us to declare that a value is not consistent with the data.

5.4.7 Other confidence levels

We can use other confidence levels by using a different critical value t∗. So the general form for our
confidence interval is

x± t∗SE

Example 5.4.4. A 98% confidence interval, for example, requires a larger value of t∗. If the sample size is
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n = 30, then we use

qt(0.99, df = 29)

## [1] 2.462

Notice the use of 0.99 in this command. We want to find the limits of the central 98% of the standard normal
distribution. If the central portion contains 98% of the distribution, then each tail contains 1%.

We could also have used the following to calculate t∗.

qt(0.01, df = 29)

## [1] -2.462

Example 5.4.5. Q. Compute a 98% confidence interval for the mean weight of a dime based on our dimes
data set.

A. We can do this by hand:

x_bar <- 2.258
t_star <- qt(0.99, df = 29); t_star

## [1] 2.462

SE <- 0.022/ sqrt(30); SE # standard error

## [1] 0.004017

ME <- t_star * SE; ME # margin of error

## [1] 0.009889

x_bar + c(-1,1) * ME

## [1] 2.248 2.268

or let R do the work for us:

t.test( ~ mass, data = Dimes, conf.level = 0.98)

##
## One Sample t-test
##
## data: mass
## t = 560, df = 29, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 98 percent confidence interval:
## 2.248 2.268
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## sample estimates:
## mean of x
## 2.258

confint(t.test( ~ mass, data = Dimes, conf.level = 0.98))

## mean of x lower upper level
## 1 2.258 2.248 2.268 0.98

5.4.8 Robustness

The confidence intervals based on the t-distributions assume that the population is normal. The degree to
which a statistical procedure works even when some or all of the assumptions used to derive its mathematical
properties are not satisfied is referred to as the robustness of the procedure. The t-based confidence intervals
are quite robust.

Quantifying robustness precisely is difficult because how well a procedure works may depend on many factors.
The general principles are

• The bigger the better.

The larger the sample size, the less it mattes what the population distribution is.

• The more normal the better.

The closer the population is to a normal distribution, the smaller the sample sizes may be.

For assistance in particular applications, we offer the following rules of thumb.

1. If the population is normal, the confidence intervals achieve the stated coverage rate for all sample sizes.

But since small data sets provide very little indication of the shape of the population distribution, the
normality assumption must be justified by something other than the data. (Perhaps other larger data sets
collected in a similar fashion have shown that normality is a good assumption or perhaps there is some
theoretical reason to accept the normality assumption.)

2. For modestly sized samples (15 ≤ n ≤ 40), the t-based confidence is acceptable as long as the distribution
appears to be unimodal and is not strongly skewed.

3. For large sample size (n ≥ 40), the t-procedure will work acceptably well for most unimodal distributions.

But keep in mind, if the distribution is strongly skewed, the mean might not be the best parameter to
estimate.

4. Because both the sample mean and the sample variance are sensitive to outliers, one should proceed with
caution when outliers are present.

Outliers that are due to mistakes and can be corrected, should be. Outliers that can be verified to be
incorrect but cannot be corrected should be removed. It is not acceptable to remove an outlier just because
you don’t want it in your data. But sometimes statisticians do “leave one out analysis" where they run the
analysis with and without the outlier. If the conclusions are the same, then the conclusions can be safely
drawn. But if the conclusions are different, likely additional data will be needed to resolve the differences.

Don’t forget: sometimes the outliers are the interesting part of the story. Determining what makes them
different from the rest of the data may be the most important thing.
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5.5 Exercises

5.1 Let X and Y be independent Gamma(shape = 2, scale = 3) random variables. Let S = X + Y and let
D = X − Y . Use simulations (with 5000 replications) and quantile-quantile pltos to answer the following:

a) Fit a normal distribution to S using fitdistr(). Is the normal distribution a good fit?

b) Fit a Gamma distribution to S using fitdistr(). Is the Gamma distribution a good fit?

c) Fit a normal distribution to D using fitdistr(). Is the normal distribution a good fit?

d) Why is it not a good idea to fit a Gamma distribution to D?

5.2 If X ∼ Norm(110, 15) and Y ∼ Norm(100, 20) are independent random varaibles:

a) What is P(X ≥ 140)?

b) What is P(Y ≥ 140)?

c) What is P(X ≥ 150)?

d) What is P(Y ≥ 150)?

e) What is P(X + Y ≥ 250)?

f) What is P(X ≥ Y )? (Hint: X ≥ Y ⇔ X − Y ≥ 0.)

5.3 Suppose X and Y are independent random variables with means and standard deviations as listed below.

mean standard deviation

X 54 12

Y 48 9

What are the mean and standard deviation of each of the following:

a) X + Y

b) 2X

c) 2X + 3Y

d) 2X − 3Y

5.4 You are interested to know the mean height of male Calvin students. Assuming the standard deviation is
similar to that of the population at large, we will assume σ = 2.8 inches.

a) What is the distribution of X − µ? (Hint: start by determining the distribution of X.)
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b) If you measure the heights of a sample of 20 students, what is the probability that your mean will be
within 1 inch of the actual mean?

c) How large would your sample need to be to make this probability be 95%?

5.5 Give an approximate 95% confidence interval for a population mean µ if the sample of size n = 25 has
mean x = 8.5 and the population standard deviation is σ = 1.7.

5.6 Determine the critical value t∗ for each of the following confidence levels and sample sizes.

a) 95% confidence level; n = 4

b) 95% confidence level; n = 24

c) 98% confidence level; n = 15

d) 90% confidence level; n = 20

e) 99% confidence level; n = 12

f) 95% confidence level; n = 123

5.7 Below is a normal-quantile plot and some summary information from a sample of the stride rates (strides
per second) of healthy men.

## response min Q1 median Q3 max mean sd n missing
## 1 strideRate 0.78 0.8575 0.93 0.96 1.06 0.9255 0.08095 20 0
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a) What is the standard error of the mean for this sample?

b) Construct a 98% confidence interval for the mean stride rate of healthy men.

c) Does the normal-quantile plot suggest any reasons to worry about the normality assumption?
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5.8 Lake Mary problem.

5.9 A random sample of size n = 8 E-glass fiber test specimens of a certain type yielded a sample mean
interfacial shear yield stress of 30.2 and a sample standard deviation of 3.1. Assuming that the population of
interfacial shear yield stress measurements is approximately normal, compute a 95% confidence interval for the
true average stress.

5.10 The code below will create a data set containing a sample of observations of polymerization degree for
some paper specimens. The data have been sorted to assist in typing. (If the data actually occurred in this
order, we would probably be doing a different sort of analysis.)

Paper <-
tibble(
polymer =
c(418, 421, 421, 422, 425, 427, 431, 434,

437, 439, 446, 447, 448, 453, 454, 463, 465))

a) Create a normal-quantile plot to see if there are any reasons to worry about the assumption that the
population is approximately normal.

b) Calculate a 95% confidence interval for the mean degree of polymerization for the population of such paper
runs. The authors of the paper did this too.

c) Based on your confidence interval, is 440 a plausible value for the mean degree of polymerization? Explain.

5.11 Using the same data, Alice constructs a 95% confidence interval and Bob creates a 98% confidence interval.
Which interval will be wider? Why?

5.12 Charlie and Denise are working on the same physics lab. Charlie leaves lab early and only has a sample
size of n = 15. Denise stays longer and has a sample size of n = 45. Each of them construct a 95% confidence
interval from their samples.

a) Whose confidence interval would you expect to be wider?

b) Under what conditions could it be the other way around?

5.13 Find an article from the engineering or science literature that computes a confidence interval for a mean
(be careful, you may see confidence intervals for many other parameters) and also reports the sample mean and
standard deviation. Check their computation to see if you both get the same confidence interval. Give a full
citation for the article you used.

Google scholar might be a useful tool for this. Or you might ask an engineering or physics professor for an
appropriate engineering journal to page through in the library. Since the chances are small that two students
will find the same article if working independently, I expect to see lots of different articles used for this problem.
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If your article looks particularly interesting or contains statistical things that you don’t understand but would
like to understand, let me know, and perhaps we can do something later in the semester with your article. It’s
easiest to do this if you can give me a URL for locating the paper online.
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Review Exercises

5.14 Even when things are running smoothly, 5% of the parts produced by a certain manufacturing process
are defective.

a) If you select 10 parts at random, what is the probability that none of them are defective?

Suppose you have a quality control procedure for testing parts to see if they are defective, but that the test
procedure sometimes makes mistakes:

• If a part is good, it will fail the quality control test 10% of the time.
• 20% of the defective parts go undetected by the test.

b) What percentage of the parts will fail the quality control test?

c) If a part passes the quality control test, what is the probability that the part is defective?

d) The parts that fail inspection are sold as “seconds”. If you purchase a “second”, what is the probability
that it is defective?

5.15 Here is a normal quantile plot from a data set.
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Sketch what a density plot of this same data would look like.

5.16 You should know how to compute confidence intervals for a single quantitative variable both “by hand”
and using t.test() if you have data. Here is a template problem you can use to practice both of these.

a) Select a data set and a quantitative variable in that data set. For example, Length in the KidsFeet data
set.

b) Use df_stats() to compute some summary statistics.

df_stats ( ~ length, data = KidsFeet)

## response min Q1 median Q3 max mean sd n missing
## 1 length 21.6 24 24.5 25.6 27.5 24.72 1.318 39 0
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c) Pick a confidence level. Example: 90% confidence.

d) From this information, compute a confidence interval

e) Now check that you got it right using t.test()

f) It is possible that you chose a variable for which this is not an appropriate procedure. Be sure to check
for that, too.

You can find other data sets using

data()

You won’t run out of examples before you run out of energy for doing these.

5.17 The pdf for a continuous random variable X is

f(x) =

{
4(x− x3) when 0 ≤ x ≤ 1

0 otherwise
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a pdf

a) Determine P(X ≤ 1
2 ).

b) Determine the mean and variance of X.

5.18 The kernel of a continuous distribution is given by k(x) = 4− x2 on the interval [−2, 2].

a) Determine the pdf of the distribution.

b) Compute the mean and variance of the distribution.
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5.19 Let X ∼ Gamma(shape = 3, rate = 2).

a) Plot the pdf of the distribution of X.

b) Determine P(X ≤ 1).

c) What proportion of the distribution is between 1 and 3?

d) Use the table to determine the mean, variance, and standard deviation of X.

e) Use integration to determine the mean, variance, and standard deviation of X. (You should get the same
answers as above.)

f) Make up other problems like this for any of the distributions in the table if you want additional practice.

5.20 Suppose X an Y are independent random variables with means and standard deviations as given in the
following table.

variable mean standard deviation

X 40 3

Y 50 4

Determine the mean and standard deviation of the following:

variable mean standard deviation

a) X + Y

b) X − Y

c) 1
2X + 7

Reminder: Expected value is another term for mean.

5.21

a) What is the difference between a statistic and a parameter?

b) What is a sampling distribution?
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c) Create other similar problems using important terms from this class.

5.22 Critical flicker frequency (called Flicker in the data set below) is the lowest flicker rate at which the
human eye can detect that a light source (from a flourenscent bulb or a computer screen, for example) is
flickering. Knowing the cff is important for product manufacturing (since detectable flickering is annoying for
the consumer). The command below loads data from from a 1973 study that attempted to determine whether
the cff, which varies from person to person, is partially determined by eye color.

Flicker <- read.file("http://www.statsci.org/data/general/flicker.txt")

## Reading data with read.table()

Create a plot that can be used to visualise the data. What does your plot suggest the answer might be? (Does
eye color matter?)

5.23 Let X1 be the distibution of sample means from a population with mean µ1 and standard deviation σ1.
Let X2 be the distibution of sample means from a population with mean µ2 and standard deviation σ2. What
is the distribution of X1 −X2? (Hint: start by determining the distributions of X1 and X2, then use what we
know about differences.)

5.24 Similar to the previous problem, we can work out the (approximate) sampling distribution for the difference
between two proportions. Use the fact that the sampling distribution for a sample proportion is approximately
Norm(p,

√
p(1−p)√

n
) to work out the (approximate) sampling distribution for the difference between two sample

proportions.
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5.25 Below is the summary of some data from a study comparing two types of concrete beams by measuring
their ultimate load (in kN).

type sample size mean standard deviation

fiberglass grid 26 33.4 2.2

commercial carbon grid 26 42.8 4.3

Create a 95% confidence interval for the difference in the mean ultimate load for the two types of beam.

5.26 The Devore7::ex9.23 data set has data on the extensibility (%) of two types of fabric, but it is arranged
awkwardly. Let’s fix that:

library(tidyr)

##
## Attaching package: ’tidyr’

## The following objects are masked from ’package:Matrix’:
##
## expand, pack, unpack

Fabric <-
Devore7::ex09.23 %>%
pivot_longer( everything(), names_to = "quality", values_to = "extensibility",

values_drop_na = TRUE)
head(Fabric)

## # A tibble: 6 x 2
## quality extensibility
## <chr> <dbl>
## 1 H 1.2
## 2 P 1.6
## 3 H 0.9
## 4 P 1.5
## 5 H 0.7
## 6 P 1.1

df_stats(extensibility ~ quality, data = Fabric)

## response quality min Q1 median Q3 max mean sd n missing
## 1 extensibility H 0.7 1.175 1.6 1.825 2.3 1.508 0.4442 24 0
## 2 extensibility P 1.0 1.250 1.5 1.725 2.6 1.588 0.5303 8 0

a) Use the summary above to compute a 95% confidence interval for the difference in mean extensitibility
for the two types of fabric.
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b) Then use t.test() to compute the confidence interval. How do the degrees of freedom from t.test()
compare with the upper and lower bounds we have for degrees of freedom? Which end of the range is it
closer to? Why?

c) Create normal-quantile plots for each group. Does it seem plausible that that the populations are normal?
Is it important that this be plausible?

Extensibility is related to the shape and drape when fabric is used to make clothing.

5.27 A sample of parts from two factories was inspected. At factory A, 172 out of 213 were rated "highest
quality". At factory B, 184 out of 207 were rated "highest quality".

a) Compute the proportion of highest quality parts produced in each sample.

b) Compute a 95% confidence interval for the difference in the proportions of parts that receive the high-
est quality rating from the two factories. Do this first without using prop.test(), then repeat with
prop.test() and compare the results.

c) Based on this data, can we be confident that one factory is better than the other? Explain.
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6
Propagation of Uncertainty

You have probably been told (in physics labs, for example) to report all measurements along with an uncer-
tainty. The reporting often uses the notation:

measurement± uncertainty .

But what is uncertainty and how is it calculated? These are topics for this chapter.

6.1 Error and Uncertainty

Although many people mistakenly conflate the terms error and uncertainty, these are two different, but
related concepts. The word “error" in the context of scientific measurement has a rather different meaning from
its use in everyday English. It does not mean blunder or goof (although a blunder or goof could increase the
amount of experimental error). Instead, error refers to the unavoidable fact that the measurements scientists
record are not exactly correct.

Error is easily defined:

error = estimate− estimand

or, equivalently,
error = measurement−measurand

That is, error is the difference between the number we have measured or calculated and the number that
calculation is attempting to estimate. In most applications, we do not know the error exactly, because we do
not know the estimand. This is where uncertainty comes in.

Uncertainty is a numerical measure summarizing how large the error might be. There are several different
types, or definitions, or uncertainty. The different definitions of uncertainty have in common that they are all
trying to describe a statistical distribution of errors. Knowing something about this distribution of the errors
can tell us how close our estimates tend to be to the estimand.

We will use standard uncertainty unless we say otherwise.
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Standard uncertainty is the (estimated) standard deviation of the distribution of errors.

You may wonder how we can know the distribution of errors when we cannot know the error. That is a good
question, which we will begin to address via an example.

6.2 An Example: Estimating the number of dimes in a sack of dimes

Suppose you want to estimate the number of dimes in a large sack of dimes. Here is one method you could use:

1. Measure the weight of all the dimes in the bag by placing them (without the bag) on an appropriately
sized scale. (Call this B̂, our estimate for B, the actual weight of the dimes in the bag.)

2. Measure the weight of 30 individual dimes and use those measurements to estimate the mean weight of
dimes. (Call this D̂.)

3. Combine these two estimates to compute an estimated number of dimes in the bag. (N̂ = B̂/D̂.)

Suppose that the dimes in our our bag together weigh 10.2 kg and the mean weight of our 30 measured dimes
is 2.258. Then we would estimate the number of dimes to be

10200/2.258 = 4516.805 .

But how good is this estimate? Do we expect to be within a small handful of dimes? Might we be off by 100 or
500? Standard uncertainty provides a way to quantify this. But first, we need to calculate uncertainty for the
two ingredients in this recipe: the total weight of all the dimes in the bag (B̂), and the mean weight of the 30
measured dimes (D̂).

6.2.1 Calculating a Standard Uncertainty without Using Data

We only measure the bag of dimes once (and might expect that the value observed on the digital read out would
be the same if we measured it repeatedly anyway), so the distribution involved in our uncertainty calculation
will be based on some assumptions about the workings of our scale. For example, we could model a reading of
10.2 kg with a Unif(10.15, 10.25)-distribution.1 This model reflects the assumption that if the actual weight is
anywhere between 10.15 and 10.25, the reading will be 10.2 and that the actual weight is equally likely to be
anywhere within that range.

If we interpret the 10.2 reading in this way, then the uncertainty can be calculated as the standard deviation of
a Unif(10.15, 10.25)-distribution:

uB̂ =
b− a√

12
=

10.25− 10.15√
12

=
0.1√
12

= 0.029kg = 28.868g

6.2.2 Calculating a Standard Uncertainty Using Data

The situation for our estimated mean weight of a dime is a little different. We weighed 30 dimes, and calculated
the mean mass of one dime from those data. But if we repeated the measurements many times – taking

1Other models are possible, and the choice of model matters for the uncertainty calculation that will result.
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another 30 dimes, calculating the average...taking another 30 dimes, calculating another average...and so on
many times...how much variability would there be in the calculated averages? We will learn how to estimate
this quantity ourselves soon; for now, we will take it as a given that it is s√

n
, where s is the standard deviation

of one sample (the masses of 30 dimes), and n is the sample size (here, 30). So the uncertainty in our mean
dime weight is about:

uD̂ =
s√
n

=
0.022√

30
= 0.004 .

So we would report our estimate for the mean weight of a dime as

2.258± 0.004 .

This notation looks like a confidence interval, and indeed it is a confidence interval. Since we are using t∗ = 1,
this is approximately a 68% confidence interval:

pt(1,df = 29) - pt(-1,df = 29)

## [1] 0.6744

6.2.3 Propagating Error by the Delta Method

Now that we have computed the uncertainties for B and D, we need to find a way to combine them to determine
the uncertainty for B/D. For this we use a linear approximation of the function f(B,D) = B/D.

Recall from calculus that

f(x, y) ≈ f(a, b) +
∂f

∂x
(x− a) +

∂f

∂y
(y − b) ,

where the partial derivatives are evaluated at (x, y) = (a, b).

If we apply this to our estimators B̂ and D̂, we get

f(B̂, D̂) ≈ f(B,D) +
∂f

∂B̂
(B̂ −B) +

∂f

∂D̂
(D̂ −D) .

From this it follows that

E(f(B̂, D̂)) ≈ E (f(B,D)) + E

(
∂f

∂B̂
(B̂ −B)

)
+ E

(
∂f

∂D̂
(D̂ −D)

)
≈ f(B,D) + 0 + 0

= f(B,D) .

(The 0’s come because our estimators are approximately unbiased: E(B̂) ≈ B and E(D̂) ≈ D.) This says that
B̂/D̂ is a reasonable estimate for B/D – it is approximately unbiased.2

But we really want an expression for the uncertainty – the variance (which we will turn into a standard
deviation). We use similar logic to the expectation calculation above, and we will need to use the finding (not

2There is a small sleight of hand here. Technically, we should evaluate the partial derivatives at the unknown values B and D.
We will instead plug in our particular estimates (from our data) for B̂ and D̂. To denote all of this completely rigorously, we would
need to have separate notation for B̂ considered as a random variable (that has an expected value and variance) and as a number
(the value computed from our particular data). We’re avoiding this extra layer of notation.
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proven here) that for constants a and b and random variable X, V ar(aX + b) = a2V ar(X). Assuming B̂ and
D̂ are independent,3 a reasonable assumption in this situation, we get

Var(f(B̂, D̂)) ≈ Var (f(B,D)) + Var

(
∂f

∂B̂
(B̂ −B)

)
+ Var

(
∂f

∂D̂
(D̂ −D)

)
= 0 +

(
∂f

∂B̂

)2

Var(B̂) +

(
∂f

∂D̂

)2

Var(D̂)

where again we evaluate the partial derivatives with B̂ and D̂.

Applying this to f(B̂, D̂) = B̂/D̂, we get

∂f

∂B̂
=

1

D̂

∂f

∂D̂
=
−B̂
D̂2

So our uncertainty for the estimated number of dimes (remember, we want the standard deviation, which will
be the square root of the variance estimate we just derived) is√

1

2.2582
· 28.8682 +

(
1.02× 104

2.2582

)2

· 0.0042 = 15.112 ,

and we would report our estimated number of dimes as

4517± 15 dimes .

The method described in this example is generally referred to as the Delta Method. Often scientists and
engineers who are using this method don’t use the hat notation to distinguish between estimates/estimators
and estimands. In the box below, we’ve dropped the hats.

The Delta Method for independent estimates

Let X and Y be independent estimates with uncertainties uX and uY , and let W = f(X,Y ). Then the
uncertainty in the estimate for W can be estimated as

uW ≈

√(
∂f

∂X

)2

u2
X +

(
∂f

∂Y

)2

u2
Y

where the partial derivatives are evaluated using estimated values of X and Y .

The Delta Method can be extended to functions of more (or fewer) than two variables by adding (or
removing) terms. Slightly more complicated formulas exist to handle situations where the estimators
are not independent (but we will not cover those in this course).

Because this method is based on using a linear approximation to f , it works better when the linear
approximation is better. In particular, when ∂2f

∂X2 or ∂2f
∂Y 2 are large near the estimated values of X and

Y , the approximations might not be very good.

3A more general formula can approximate the propagation of uncertainty in cases where B̂ and D̂ cannot be assumed to be
independent.
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6.2.4 Estimating Uncertainty via Simulations

We can also estimate the uncertainty in the estimated number of dimes using simulations.

B <- runif(10000, 10150, 10250)
SampleMeans <- do(10000) * mean( ~ mass, data = resample(Dimes) )
head(SampleMeans ,3)

## mean
## 1 2.259
## 2 2.257
## 3 2.253

D <- SampleMeans$mean
N <- B / D
histogram( ~ N)
gf_qq( ~ N)
sd(N)

## [1] 15.15
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A few explanatory notes regarding the computation above.

1. resample() samples from a data frame with replacement. That is, some of the rows may appear more than
once, others not at all. Resampling is a common way to estimate a sampling distribution from a single
sample. resample() can also be used on a “bare" vector (that is, a vector of data points not contained
within a data frame, as exemplified below).

resample(1:10) # some items may be chosen more than once

## [1] 9 3 9 7 9 7 2 6 10 4

sample(1:10) # no item may be chosen more than once, so this just shuffles

## [1] 4 5 3 7 6 1 8 9 10 2

shuffle(1:10) # this also shuffles

## [1] 10 8 9 6 5 2 1 4 3 7
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2. When do() doesn’t know what to call the result of what it is “doing”, it calls it result. (Sometimes do()
can figure out a better name.)

3. The simulated distribution of N = B/D is unimodal, roughly symmetric, and reasonably well approxi-
mated by a normal distribution (but clearly not exactly normal). The Delta Method does not guarantee
that the distribution will be approximately normal – it only estimates the variance. Sometimes the dis-
tribution will be skewed or have heavier or lighter tails than a normal distribution.

4. The results of the Delta Method and simulation are very close. Each is an acceptable method for approx-
imating the same thing, so this is not surprising.

6.3 Reporting Measurements and Estimates

6.3.1 What to record, What to report

When you record the results of a measurement for which there is an a priori estimate of uncertainty, the
uncertainty should be recorded along with the measurement itself. Similarly, reports of quantities estimated
from data should also include estimated uncertainties.

As a general guideline, a properly reported scientific estimated quantity includes the following five elements:

1. A number (the estimate)

2. Units (e.g., m or kg or seconds)

3. A statement about how it was measured or calculated

4. A statement about most likely sources of (the largest components of) error

5. An estimate of the uncertainty

Example 6.3.1. If you measured the length of a pendulum using a meter stick, you might report the
measurement this way:

• Length = 0.834± 0.002 m

• Measured with a meter stick from pivot point to the center of the steel weight.

• Uncertainty reflects the limited accuracy of measurement with a meter stick.

In plots, the number is given by the scales of the plot, the units are typically included in the axes labels,
uncertainties may be represented by “error bars", and a statement describing the method of measurement or
calculation should appear in the plot legend.

6.3.2 How many decimal places?

Numerical values and their uncertainties should be recorded to the proper number of decimal places. Most
software either reports too many significant digits or rounds numbers too much. For correct professional pre-
sentation of your data, follow these guidelines:

1. The experimental uncertainty should be rounded to one significant figure unless the leading digit is a 1,
in which case, it is generally better to use two digits.
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2. A measurement should be displayed to the same number of decimal places as the uncertainty on that
measurement.

Note carefully the difference between significant figure and decimal place. The following examples will help:

Example 6.3.2. The timer reports a value of 0.3451 seconds. The uncertainty on the measurement is 0.0038
seconds. By Rule 1, the uncertainty should be reported to one significant figure, so we round it to 0.004 seconds.
By Rule 2, the measurement must also be rounded to the third decimal place. Thus, the measurement should
be reported as 0.345± 0.004 seconds.

Example 6.3.3. The measured value is 7.92538 · 104, and its uncertainty is 2.3872 · 102. By Rule 1, the
uncertainty should be rounded to one significant figure, so 2 · 102. By Rule 2, we report the measurement to the
same decimal place as the uncertainty, so 7.93 · 104. Putting it together, the measurement should be reported
as (7.93± 0.02)104.

Example 6.3.4. The estimated value is 89.231, and its uncertainty is 0.1472. By Rule 1, the uncertainty
should be rounded to two significant figures, so 0.15. By Rule 2, we report the estimate to the same decimal
place as the uncertainty, so 89.23± 0.15.

6.3.3 Reporting numbers in a table

Multiple similar measurements should be reported in a table. The column headings should clearly and concisely
indicate the quantity in each column; the column heading must include the units. Uncertainties should be listed
in a separate column, located just to the right of the measurement column. (Sometimes, uncertainties are listed
in parentheses after the estimate instead; just make sure the header and legend of the table makes it clear what
values are being reported, and where.)

Example 6.3.5. A lab group calculated these numbers for kinetic energy and its uncertainty:

Kinetic Energy uncertainty

0.8682 0.059

1.0661 0.071

1.0536 0.070

1.3881 0.058

0.8782 0.108

This should be reported with appropriate rounding as

Kinetic Energy uncertainty

0.87 0.06

1.07 0.07

1.05 0.07

1.39 0.06

0.88 0.11
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6.4 Additional Propagation of Uncertainty Examples

Example 6.4.1. Q. The side of a square is measured and reported as 12.3± 0.2 mm. How should the area be
reported?

A. Our estimate for the area is 12.32 = 151.29. Our transformation is f(x) = x2, so ∂f
∂x = f ′(x) = 2x. Applying

the Delta Method, our uncertainty is

√
(2(12.3))2(0.2)2 = 2(12.3)(0.2) = 4.92

and we report the area as 151± 5.

It is worth looking at the relative uncertainty of the linear and area measurements.

0.2

12.3
= 0.016

5

151
= 0.032

So the relative uncertainty of the area measurement is twice the relative uncertainty of the linear measurement.

The preceding example demonstrates a simplified version of the Delta Method formula when we are dealing
with only one estimator.

The Delta Method for one estimator
Let X be an estimator with uncertainty uX and let Ŵ = f(X̂). Then the uncertainty in the estimate
W can be estimated as

uW ≈
∣∣∣∣ dfdX

∣∣∣∣uX
where the derivative is evaluated using the estimated value of X, X̂.

Example 6.4.2. Q. The sides of a rectangle are measured and reported as 12.3± 0.2 mm and 6.3± 0.1 mm.
How should the area be reported?

A. Our estimate for the area is 12.3 · 6.3 = 77.49.

Now we need to estimate the uncertainty. Our transformation is f(x, y) = xy, so ∂f
∂x = y and ∂f

∂y = x.

√
6.32 · 0.22 + 12.32 · 0.12 = 1.761

and we should report the area as

77.5± 1.8

Sometimes it is more convenient to think about relative uncertainty:
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Absolute and relative uncertainty

relative uncertainty =
uncertainty of measurement
magnitude of measurement

For example, if we measure a mass to be 10.2 g with an uncertainty of 0.3 g, the relative uncertainty is

0.3

10.2
= 0.029 = 2.9%

Often it is the case that uncertainty grows with the magnitude of the estimate, and relative uncertainty
is a way of comparing the uncertainty in large measured values with the uncertainty of small measured
values on a more equal basis. Relative uncertainty is also independent of the units used.

In the example above, we get a nice formula if we compute relative uncertainty instead of absolute uncertainty.
Let P = XY where X and Y have uncertainties uX and uY . Then ∂P

∂X = Y and ∂P
∂Y = X, so

uP
P

=

√
Y 2u2

X +X2u2
Y

P 2

=

√
Y 2u2

X +X2u2
Y

X2Y 2

=

√
u2
X

X2
+
u2
Y

Y 2

=

√(uX
X

)2

+
(uY
Y

)2

which gives a Pythagorean identity for the relative uncertainties.

The computations are the same for any product. So this Pythagorean identity for relative uncertainties can be
applied to estimate uncertainties for quantities such as area (length × width), work (force × distance), distance
(velocity × time), etc.

Example 6.4.3. Q. Use relative uncertainty to estimate the area of the rectangle in Example 6.4.2.

A. The relative uncertainties in the length and width are

0.2

12.3
= 0.016 and

0.1

6.3
= 0.016 .

So the relative uncertainty in the area estimation is√
(0.016)2 + (0.016)2 = 0.023 .

Now we solve
uA

77.49
= 0.023

to get
uA = (77.49)(0.023) = 1.761 .

Notice that this matches the result from Example 6.4.2.

Example 6.4.4. Q. When two resistors with resistances R1 and R2 are connected in parallel, the combined
resistance satisfies

R =
R1R2

R1 +R2
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Suppose the resistances of the two resistors are reported as 20± 0.7 ohms and 50± 1.2 ohms. How should you
report the combined resistance?

A. Our estimate is R̂ = 20·50
20+50 = 14.286. To estimate the uncertainty, we need the partial derivatives ∂R

∂R1
and

∂RR2.

∂R

∂R1
=

(R1 +R2)R2 − (R1R2)

(R1 +R2)2

=

(
R2

R1 +R2

)2

=

(
50

20 + 50

)2

= 0.51

Similarly,

∂R

∂R2
=

(
R1

R1 +R2

)2

=

(
20

20 + 50

)2

= 0.082

So our estimated uncertainty is given by

uR =
√

(0.51)2(0.7)2 + (0.082)2)(1.22) = 0.37 .

So we report the combined resistance as

14.3± 0.4

6.5 Experimental Error and Its Causes

There are many reasons for experimental error, and it is important to identify potential causes for experimental
error, to reduce their effects when possible, and to handle them appropriately in any case.

6.5.1 Random error: Same procedure, different results

Even if measurements are taken by carefully trained scientists using highly precise instruments, repeated mea-
surements of the “same thing" may not always give the same value.

All data collection is done in the context of variability, and statistics allows us to interpret our data in this
context.

The moving target

One reason that a measurement may change is that what we are measuring may be changing. Some quantities
depend on environmental factors (like temperature and atmospheric pressure, for example) that may change
between measurements. This sort of variability can often be reduced by attempting to control factors that
might lead to such variability. For example, a delicate experiment might be conducted in a climate controlled
chamber. Another solution is to use a model that includes additional variables for these quantities. Often a
combination of these two approaches is used.

Last Modified: January 23, 2021 Stat 241 : Pruim



6. Propagation of Uncertainty 143

If measurements are made using similar (but not identical) objects, then differences among those objects may
lead to variability in measurements. If measurements are made on a sample of living things, the variability from
one individual to the next could be quite large. But even in the physical sciences, each run of an experiment may
require the use of different “consumables” that have slightly different properties that affect our measurements.

Measurement error

Another source of error is the measuring process itself. Every measuring device has its limits, as do the humans
who are using them. If you repeatedly timed how long it takes for a steel ball to fall from a fixed height, it is
quite likely that you would not get exactly the same result each time. The amount of variability would likely
increase if several different students were each asked to measure the time as different students might employ
slightly different methods, or be more or less skillful in their measuring.

The variability from one measurement to another that would exist even if there were no moving target effect
is called measurement error. In practice, it can be difficult or impossible to isolate the moving target effect
from measurement error, so they may be combined into one source of variability which we will call random
error. In physics, the moving target effect is often small – at least in carefully designed experiments – so that
random error is dominated by the difficulties of measuring the quantity under study. In other disciplines, the
relative magnitudes may be reversed.

The best way to estimate the effects of random error is by making repeated measurements and comparing them.
The discrepancies (differences between measurements) provide an indication of the amount of random error.

Sometimes additional information can also be used to help us estimate random error. This can be especially
important when our ability to take repeated measurements is limited or when limitations of our measurement
apparatus make it impossible to directly observe the effects of random error.

Invisible measurement error

Although there is no theoretical limit to the precision of a numerical quantity like mass, time, velocity, etc.,
every measurement device has limited precision. Because of this lack of precision in our measurement device,
it may well be that repeated measuremets will all look identical. But this does not mean that they are exactly
correct.

For example, if we measure temperature using a digital thermometer that has a display showing tenths of a
degree C, then any temperature between 57.15 and 57.25 will be displayed as 57.2. Any variability within that
range will be invisible to our thermometer. Similarly, if we meaure with a ruler with a 1/8 inch scale, we can use
interpolation to get not only to the nearest 1/8 inch, but likely to the nearest 1/16 inch or (with some practice)
perhaps to the nearest 1/32 inch. But beyond that, we really cannot tell. If more precise measurements are
required, a different measuring tool will need to be used.

If other sources of variability are small, this kind of measurement error may completely mask them.

6.5.2 Systematic error: A tendency to over- or under-estimate

Even if your target were not moving, and even if there were no variability in measurements from time to
time, and even if our measurement apparatus were perfectly precise, there is still a chance that a measurement
might not give the value we are searching for because the procedure used might tend to give results that over- or
under-estimate the quantity being measured. This kind of error may be referred to as either bias or systematic
error.
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Bias or Systematic error refers to the tendency to either over- or under-estimate a quantity. It is a
tendency to “be off in a particular direction”.

Calibration errors

Perhaps the easiest type of systematic error to understand is calibration error. If a measuring device is not
properly calibrated, the resulting measurements may be too large or too small. For example, if a timing device
uses an internal clock that runs a bit slow, it will tend to underestimate times. It might be possible to correct
for this bias by performing calibration exercises comparing this timing device to another (more accurate) device.
If several similar timing devices systematically disagree, but there is no reference to calibrate with, then we
have evidence that at least some of the devices are introducing systematic error, but we may not know which
ones or how much.

Calibrating equipment and procedures by using them to measure or compute standard quantities is an important
part of quality scientific experimentation because it helps reduce the effects of systematic bias.

Design flaws

Poorly designed experiments can also introduce systematic error. For example, imagine an experiment where a
steel ball is dropped from a platform at different heights and the time is recorded until the ball hits the ground.
To save time, the researchers set the platform at a specified height and drop the ball multiple times before
moving the platform to a new height and repeating. Using this method, any error in measuring the height of
the platform will affect all the drops from that height in the same way. This introduces an unknown amount
of systematic error into the measurements taken at each height. An alternative design in which the heights are
done in random order and in which the platform height is reset before each drop would likely have somewhat
more random error but would avoid this source of systematic error.

Dealing with systematic error

Systematic error is generally more difficult to handle than random error in part because there is often no good
way to measure how large systematic error might be or even to detect that it is occurring.

6.5.3 Relative Magnitudes of Errors from Different Sources

We have identified several potential sources of error. It is good to get in the habit of qualitatively determining
which sources you expect to contribute relatively larger and smaller amounts of error. Often we can ignore the
sources of relatively smaller potential error and focus our attention on the sources of relatively larger potential
error.

6.6 Uncertainty – How Much Error Might There Be?

In Section 6.4 we did several examples of propagation of uncertainty. But uncertainty cannot be propagated to
derived estimates unless we already have estimated uncertainties for the components of the derivation. Where
do these uncertainty estimates come from?

As we have mentioned before, it is not possible to measure error directly. If we knew the amount of an error
exactly, we would correct for it and obtain the exact, correct estimate of the value we were trying to measure.
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Since we do not know the error exactly, we have to try to use our data (and our prior knowledge about the
situation) to try to estimate it. In this section we focus our attention on this part of the uncertainty calculation.

6.6.1 Looking at variability in your data

If you have repeated measurements, a histogram, boxplot, or density plot of these measurements can provide a
visual representations that shows both what is “typical” or “average” and how much variability there is in the
data.
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Figure 6.1: Three graphical representations of the same 25 measurents.

In addition, graphical displays of your data may help isolate outliers – values that don’t seem to fit the pattern
of the rest of the data. Outliers should not be removed from your data without furhter investigation. You need
to know why these values are different from the rest. Was there a mistake in the measurement? Was the value
recorded incorrectly (decimal point in the wrong place, wrong units, transposed digits, typo)? Or was there
something different going on – so that the potential outlier is really an important, informative data point that
is trying to tell you something about the process you are measuring? An outlier might be the key observation
in your data set – don’t throw it away without investigating.

6.6.2 Estimating uncertainty from your data

Whenever possible, you should make multiple measurements of the same phenomenon. The variability among
these measurements allows us to estimate the uncertainty. If we are using the mean of multiple measurements
as our estimate, then the uncertainty is the “standard error of the mean" (which we will derive in the following
chapter):

SE =
s√
n

This is how we estimated the uncertainty in our estimate for the mean weight of a dime.

In other more complicated study designs, some other standard error formula may be used.

6.6.3 Estimating uncertainty in other ways

Estimating uncertainty from data is only possible if

• You have multiple measurements from which to estimate the variability, and

• The measurements actually vary (aren’t masked by imprecise measuring devices, for example).

Frequently, these conditions are not met, but we still want to quantify the uncertainty.

Math 241 : Pruim Last Modified: January 23, 2021



146 6. Propagation of Uncertainty

The uniform model for measurement (im)precision

There are many measuring devises that provide limited precision so that the best we may be able to say is that
we know the measured value to be in some interval [a, b]. This would be the case for measuring devices with
digital displays, for example. Imagine a device that displays 8.03 on its digital display. Presumably, this means
that the actual measurement can lie anywhere between 8.025 and 8.035. This value has been rounded for digital
display, and we have no way of knowing where within that interval the value might be.

We don’t want to report the uncertainty as b − a or even (b − a)/2. These would be overestimates of the
“average" amount of error. Here, we aren’t looking for an upper bound on the potential error; we want to
estimate something like the average amount of error.

In this case we can estiamte a standard uncertainty based on the uniform distribution. Recall, a uniform
distribution is one in which every value in some interval is “equally likely”. A uniform distribution has standard
deviation s = b−a√

12
, so we will use this as our estimate for standard uncertainty as well. Notice that 2√

12
= 1√

3
=

0.577. This means that adding and subtracting one standard uncertainty from the center of the interval

a+ b

2
± b− a√

12

will cover about 58% of the interval. This is quite a bit less than the 68% covered by the central portion of a
normal distribution (within 1 standard deviation of the mean). For a “back of the envelope” computation, to
use an uncertainty with a similar amount of “coverage" to the “coverage" that the standard deviation has for the
normal distribution, we might choose to use the approximation b−a√

12
≈ b−a

3 , since this will slightly over-estimate
the uncertainty and lead to a central covering probability of 2/3 ≈ 68%.

This same idea can be used when working with analog scales, but in this case, we typically can see that the
value is closer to one end than the other or closer to the center than to the edges. This reduces our uncertainty
by a factor of 2. For example, given a ruler marked in mm, if we can tell than a reading is closer to 12.3 mm
than it is to 12.4 mm, then we are saying we know the value is in the interval [12.3, 12.35], which is only half as
wide as the scale of the ruler. We can then use a uniform distribution as above, except that the limits a and b
of the distribution are a bit narrower now. (On some analog scales, it may be possible to do even better than
this.)

Example 6.6.1. Measuring length on a ruler with a 1 mm scale, we could use 1/2√
12

as the estimated uncertainty
of the measurement if the primary source of error is reading the scale. Of course, it may be that lining up the
scale with the object being measured introduces more uncertainty than reading the scale does. That may lead
us to choose a larger value for our estimated uncertainty.

Other models for measurement (im)precision

Other distributions, most notably the triangle and normal distributions, are sometimes used instead of the
uniform distribution to model errors in measurements made with various devices. Each of these models produces
a somewhat smaller estimate for the uncertainty than you would get using a uniform distribution. In the case
of the normal distribution, typically one considers half the width of the interval to be spanned by 3 standard
deviations of the normal distribution (since that would capture 99.7% of the distribution. If a and b are the
lower and upper limits of plausible values corresponding to a measurement, the three uncertainty calculations
are as follows:
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distribution uncertainty

uniform
b− a
2
√

3

triangle
b− a
2
√

6

normal
b− a
2 · 3

This makes the uniform distribution the most conservative and the normal distribution the least conservative.

Taking advantage of other data

Sometimes previous experience with a device or protocol may provide us with a good estimate for the uncertainty
even before we collect our data. In such cases, we can use these a priori uncertainties both in planning and in
analysis, but it is also good to check that the data collected are consistent with the estimated uncertainties.
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6.7 Exercises

6.1 A clinical trial with 30 patients has been performed in which the volume of distribution (the theoretical
volume that would be necessary to contain the total amount of an administered drug at the same concentration
that it is observed in the blood plasma) of a new anti-diabetes drug was measured for each patient. The sample
mean was 10.2 L with a standard deviation of 1.9 L.

a) Calculate a 95% confidence interval for the the mean volume of distribution.

b) Calculate a 99% confidence interval for the the mean volume of distribution.

c) Calculate the standard uncertainty for the mean volume of distribution.

6.2 A handbook gives the value of the coefficient of linear thermal expansion of pure copper at 20 degrees C,
α20(Cu), as 16.52×10−6 ◦C−1 and simply states that “the error in this value should not exceed 0.40×10−6 ◦C−1.”

a) Based on this limited information, and assuming a rectangular distribution, compute the standard uncer-
tainty.

b) Based on this limited information, and assuming a triangular distribution, compute the standard uncer-
tainty.

c) Why might one prefer one of these over the other?

6.3 The following data are given in in the certificate of a standard solution: C(HCl) = (0.10000 ± 0.00010)
mol/l. No additional information is given on the type of the uncertainty. (The ± part here is not the uncertainty
but is supposed to indicate upper and lower bounds on the error.)

a) Convert the uncertainty to standard uncertainty assuming a rectangular distribution.

b) Convert the uncertainty to standard uncertainty assuming a triangular distribution.

6.4 The area of a circle is to be calculated from a measured radius. The measurement and its standard
uncertainty are reported as

12.5± 0.3m .

What should the researchers report as the area?

6.5 Below are some computer-computed estimates and uncertainties. They are far too precise (there are way
too many digits reported). Use standard practice to report each estimate with the correct number of digits.

estimate uncertainty

5.43210 0.024135

1535.68 12.7342

576.3415 3.453567

0.00148932 0.0000278
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6.6 A student is calculating the volume of a rectangular tank by measuring the length, width, and height.
These measurements are recorded as L = 2.65± 0.02cm, W = 3.10± 0.02cm, and H = 4.61± 0.05 cm.

How should the volume be reported?

6.7 Estimate (with uncertainty) the amount of gasoline burned by personal cars in a particular year in the US
from the following estimates and uncertainties for that year:

quantity estimate uncertainty

cars per person 0.80 0.12

population (millions of people) 311.6 .2

fleet fuel efficiency (mpg) 23.7 1.7

average distance driven per vehicle (miles) 12,000 2,000

Note: Various estimates for these quantities are available online, but most do not report uncertainty. The
uncertainties here reflect the number of significant figures used to report these numbers and the variability
between estimates found at different web sites. Also, the methodology for determining these values is not
always clear. So treat this as an exercise in propagation of error, but understand that better estimates of fuel
consumption (and uncertainty) would be possible with better data.

6.8 A physics student is calculating the speed of a falling object by measuring the time it takes for the object to
move between two timing sensors. If she records the time as 0.43±0.02 seconds and the distance as 1.637±0.006
m, how should she report the speed in m/s?

6.9

a) Work out a formula for the relative uncertainty of Q = X/Y given relative uncertainties for X and Y .

b) Redo problem 6.8 using your new formula.
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7
Linear Models

In Chapter 6 we learned how to estimate one quantity based on its (known) relationship to other quantities.
For example, we estimated the number of dimes in a sack of dimes from our estimates of the weight of the dimes
and the average weight of a dime.

In this chapter we will explore how to use data to determine the relationship among two or more variables when
this relationship is not known in advance. The general framework we will use is

Y = f(x1, x2, . . . , xk) + ε

• Y is the response variable that we are trying to estimate from k explanatory or predictor variables
x1, x2, . . . , xk.

• The relationship between the explanatory variables and the response variables is described by a function
f .

• The relationship described by f need not be a perfect fit. The error term in the model, ε, describes how
individual responses differ from the value given by f .

We will model ε with a distribution – typically a distribution with a mean of 0 – so another way to think
about this model is the for a given values of the predictors, the values of Y have a distribution. The mean
of this distribution is specified by f and the shape by ε.

7.1 The Simple Linear Regression Model

Y = β0 + β1x+ ε where ε ∼ Norm(0, σ).

In other words:

• The mean response for a given predictor value x is given by a linear formula

mean response = β0 + β1x

This can also be written as
E(Y | X = x) = β0 + β1x

• The distribution of all responses for a given predictor value x is normal.
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• The standard deviation of the responses is the same for each predictor value,

Furthermore, in this model the values of ε are independent.

There are many different things we might want to do with a linear model, for example:

• Estimate the coefficients β0 and β1.

• Estimate the value Y associated with a particular value of x.

• Say something about how well a line fits the data.

7.2 Fitting the Simple Linear Model

7.2.1 The Least Squares Method

We want to determine the best fitting line to the data. The usual method is the method of least squares1, which
chooses the line that has the smallest possible sum of squares of residuals, where residuals are defined by

residual = observed− predicted

Example 7.2.1. Consider the following small data set.

SomeData <- tibble(
x = c(1,2,4,5,6),
y = c(1,4,3,6,5)

)
SomeData

## # A tibble: 5 x 2
## x y
## <dbl> <dbl>
## 1 1 1
## 2 2 4
## 3 4 3
## 4 5 6
## 5 6 5

gf_point( y ~ x, data = SomeData) %>%
gf_lims(y = c(0, 7), x = c(0, 7))
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y

1. Add a line to the plot that “fits the data well". Don’t do any calculations, just add the line.

2. Now estimate the residuals for each point relative to your line

3. Compute the sum of the squared residuals, SSE.

4. Estimate the slope and intercept of your line.

1In this case, it turns out that the least squares and maximum likelihood methods produce exactly the same results.
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For example, suppose we we select a line that passes through (1, 2) and (6, 6). the equation for this line is
y = 1.2 + 0.8x, and it looks like a pretty good fit:

f <- makeFun( 1.2 + 0.8 * x ~ x)
gf_point(y ~ x, data = SomeData) %>%
gf_lims(x = c(0, 7), y = c(0, 7)) %>%
gf_fun( f(x) ~ x, col = "gray50" )
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The residuals for this function are

resids <- with(SomeData, y - f(x)) ; resids

## [1] -1.0 1.2 -1.4 0.8 -1.0

and SSE is

sum(resids^2)

## [1] 6.04

The following plot provides a way to visualize the sum of the squared residuals (SSE).

Math 241 : Pruim Last Modified: January 23, 2021



154 7. Linear Models
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SSE = 6.04

If your line is a good fit, then SSE will be small. The best fitting line will have the smallest possible SSE. The
lm() function will find this best fitting line for us.

model1 <- lm( y ~ x, data = SomeData ); model1

##
## Call:
## lm(formula = y ~ x, data = SomeData)
##
## Coefficients:
## (Intercept) x
## 1.163 0.733

This says that the equation of the best fit line is

ŷ = 1.163 + 0.733x

gf_point(y ~ x, data = SomeData) %>%
gf_lm()
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We can compute SSE using the resid() function.

SSE <- sum (resid(model1)^2); SSE

## [1] 5.57
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SSE = 5.57

As we see, this is a better fit than our first attempt – at least according to the least squares criterion. It will
better than any other attempt – it is the least squares regression line.

7.2.2 Properties of the Least Squares Regression Line

For a line with equation y = β̂0 + β̂1x, the residuals are

ei = yi − (β̂0 + β̂1x)

and the sum of the squares of the residuals is

SSE =
∑

e2
i =

∑
(yi − (β̂0 + β̂1x))2

Simple calculus (which we won’t do here) allows us to compute the best β̂0 and β̂1 possible. These best values
define the least squares regression line. We always compute these values using software, but it is good to note
that the least squares line satisfies two very nice properties.

1. The point (x, y) is on the line.

This means that y = β̂0 + β̂1x (and β̂0 = y − β̂1x)

2. The slope of the line is b = r
sy
sx

where r is the correlation coefficient:

r =
1

n− 1

∑ xi − x
sx

· yi − y
sy

Since we have a point and the slope, it is easy to compute the equation for the line if we know x, sx, y, sy, and
r.
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7.2.3 An Example: Estimating OSA

Example 7.2.2. In a study of eye strain caused by visual display terminals, researchers wanted to be able
to estimate ocular surface area (OSA) from palpebral fissure (the horizontal width of the eye opening in cm)
because palpebral fissue is easier to measure than OSA.

Eyes <-
read.table(
"https://rpruim.github.io/Engineering-Statistics/data/PalpebralFissure.txt",
header = TRUE)

head(Eyes, 3)

## palpebral OSA
## 1 0.40 1.02
## 2 0.42 1.21
## 3 0.48 0.88

x.bar <- mean( ~ palpebral, data = Eyes)
y.bar <- mean( ~ OSA, data = Eyes)
s_x <- sd( ~ palpebral, data = Eyes)
s_y <- sd( ~ OSA, data = Eyes)
r <- cor( palpebral ~ OSA, data = Eyes)
c( x.bar = x.bar, y.bar = y.bar, s_x = s_x, s_y = s_y, r = r )

## x.bar y.bar s_x s_y r
## 1.0513 2.8403 0.3798 1.2083 0.9681

slope <- r * s_y / s_x
intercept <- y.bar - slope * x.bar
c(intercept = intercept, slope = slope)

## intercept slope
## -0.3977 3.0800

Fortunately, statistical software packages do all this work for us, so the calculations of the preceding example
don’t need to be done in practice.

Example 7.2.3. In a study of eye strain caused by visual display terminals, researchers wanted to be able
to estimate ocular surface area (OSA) from palpebral fissure (the horizontal width of the eye opening in cm)
because palpebral fissue is easier to measure than OSA.

osa.model <- lm(OSA ~ palpebral, data = Eyes)
osa.model

##
## Call:
## lm(formula = OSA ~ palpebral, data = Eyes)
##
## Coefficients:
## (Intercept) palpebral
## -0.398 3.080
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lm() stands for linear model. The default output includes the estimates of the coefficients (β̂0 and β̂1) based
on the data. If that is the only information we want, then we can use

coef(osa.model)

## (Intercept) palpebral
## -0.3977 3.0800

This means that the equation of the least squares regression line is

ŷ = −0.398 + 3.08x

We use ŷ to indicate that this is not an observed value of the response variable but an estimated value (based
on the linear equation given).

R can add a regression line to our scatter plot if we ask it to.

gf_point( OSA ~ palpebral, data = Eyes) %>%
gf_lm()
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We see that the line does run roughly “through the middle” of the data but that there is some variability above
and below the line.

7.2.4 Explanatory and Response Variables Matter

It is important that the explanatory variable be the “x” variable and the response variable be the “y” variable
when doing regression. If we reverse the roles of OSA and palpebral we do not get the same model. This is
because the residuals are measured vertically (in the y direction).

7.3 Estimating the Response

We can use our least squares regression line to estimate the value of the response variable from the value of the
explanatory variable.

Example 7.3.1. If the palpebral width is 1.2 cm, then we would estimate OSA to be

ˆosa = −0.398 + 3.08 · 1.2 = 3.298
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R can automate this for us too. The makeFun() function will create a function from our model. If we input a
palpebral measurement into this function, the function will return the estimated OSA.

estimated.osa <- makeFun(osa.model)
estimated.osa(1.2)

## 1
## 3.298

As it turns out, the 17th measurement in our data set had a palpebral measurement of 1.2 cm.

Eyes[17,]

## palpebral OSA
## 17 1.2 3.76

The corresponding OSA of 3.76 means that the residual for this observation is

observed− predicted = 3.76− 3.298 = 0.462

7.3.1 Cautionary Note: Don’t Extrapolate

While it often makes sense to generate model predictions corresponding to x-values within the range of values
measured in the dataset, it is dangerous to extrapolate and make predictions for values outside the range included
in the dataset. To assume that the linear relationship observed in the dataset holds for explanatory variable
values outside the observed range, we would need a convincing, valid justification, which is usually not available.
If we extrapolate anyway, we risk generating erroneous or even nonsense predictions. The problem generally
gets worse as we stray further from the observed range of explanatory-variable values.

7.4 Parameter Estimates

7.4.1 Interpreting the Coefficients

The coefficients of the linear model tell us how to construct the linear function that we use to estimate response
values, but they can be interesting in their own right as well.

The intercept β0 is the mean response value when the explanatory variable is 0. This may or may not be
interesting. Often β0 is not interesting because we are not interested in the value of the response variable when
the predictor is 0. (That might not even be a possible value for the predictor.) Furthermore, if we do not collect
data with values of the explanatory variable near 0, then we will be extrapolating from our data when we talk
about the intercept. (Extrapolating is dangerous because we can’t really be sure that the relationships we’ve
uncovered with our model really hold for variable values outside the range we measured.)

The estimate for β1, on the other hand, is nearly always of interest. The slope coefficient β1 tells us how
quickly the response variable changes per unit change in the predictor. This is an interesting value in many
more situations. Furthermore, when β1 = 0, then our model does not depend on the predictor at all. So if we
construct a confidence interval for β1, and it contains 0, then we do not have sufficient evidence to be convinced
that our predictor is of any use in predicting the response.
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7.4.2 Estimating σ

There is one more parameter in our model that we have been mostly ignoring so far: σ (or equivalently σ2). This
is the parameter that describes how tightly things should cluster around the regression line. We can estimate
σ2 from our residuals:

σ̂2 = MSE =

∑
i e

2
i

n− 2

σ̂ = RMSE =
√
MSE =

√∑
i e

2
i

n− 2

The acronyms MSE and RMSE stand for Mean Squared Error and Root Mean Squared Error. The
numerator in these expressions is the sum of the squares of the residuals

SSE =
∑
i

e2
i .

This is precisely the quantity that we were minimizing to get our least squares fit.

MSE =
SSE

DFE

where DFE = n− 2 is the degrees of freedom associated with the estimation of σ2 in a simple linear model.
We lose two degrees of freedom when we estimate β0 and β1, just like we lost 1 degree of freedom when we had
to estimate µ in order to compute a sample variance.

RMSE =
√
MSE is listed in the summary output for the linear model as the residual standard error

because it is the estimated standard deviation of the error terms in the model.

summary(osa.model)

##
## Call:
## lm(formula = OSA ~ palpebral, data = Eyes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.609 -0.199 -0.019 0.217 0.664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.398 0.168 -2.37 0.025
## palpebral 3.080 0.151 20.45 <2e-16
##
## Residual standard error: 0.308 on 28 degrees of freedom
## Multiple R-squared: 0.937,Adjusted R-squared: 0.935
## F-statistic: 418 on 1 and 28 DF, p-value: <2e-16

We will learn about other parts of this summary output shortly. Much is known about the estimator σ2,
including

• σ̂2 is unbiased (on average it is σ2), and
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• the sampling distribution is related to a Chi-Squared distribution with n − 2 degrees of freedom. (Chi-
Squared distributions are a special case of Gamma distributions.) More specifically,

SSE

σ2
=

(n− 2)σ̂2

σ2
∼ Chisq(n− 2) .

7.5 Checking Assumptions

7.5.1 What have we assumed?

In fitting a linear regression model, we have assumed:

• A linear relationship between the explanatory and response variables

• The errors (ε) are Normally distributed

• Independence of the errors (in particular, no correlation over time between successive errors for data points
collected over time)

• Homoscedasticity of the errors – this means that the variance (spread) of the errors is constant over time,
and over the full range of explanatory and predictor variables

7.5.2 Don’t Fit a Line If a Line Doesn’t Fit

The least squares method can be used to fit a line to any data – even if a line is not a useful representation of
the relationship between the variables. When doing regression we should always look at the data to see if a line
is a good fit. If it is not, then the simple linear model is not a good choice and we should look for some other
model that does a better job of describing the relationship between our two variables.

7.5.3 Checking the Residuals

We look at the residuals (not just the data scatter plot) because some of our assumptions refer specifically to
them. Also, often, it is easier to assess the linear fit by looking at a plot of the residuals than by looking at the
natural scatter plot, because on the scale of the residuals, violations of our assumptions are easier to see.

So, to verify that our linear regression assumptions are sensible, we can examine the model residuals. Residuals
should be checked to see that their distribution looks approximately normal and that thier standard deviation
(the spread of the residuals) remains consistent across the range of our data (and across time).

In addition, especially if the data were collected over time (measurements made in order during an experiment;
data points collected at a series of time points), it is important to verify that the residuals are independent of
one another over time. To look for this problem, we can look at a scatter plot of the residuals as a function of
time, and suspect a problem if we see series of very large, or very small, residuals all in a row. Another plot that
can help us look for non-independence in the residuals is a plot of the autocorrelation function (ACF), obtained
using the acf() function in R. This function computes and plots the correlation coefficient R for the residuals
at various “lags". For example, the correlation coefficient for lag 1 is the correlation coefficient between each
residual (corresponding to the ith datapoint) and the preceding one (the i-1 th data point). Lag 2 is between
the ith and i-2 th data point, and so on. If the residuals are not independent, then these coefficients will have
large absolute values. (Note: the “lag 0" coefficient measures the correlation of the ith residual with itself, so it
is always 1. This does NOT indicate any problem with the linear regression model.)

In general, we might want to check the following plots of the residuals:
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• Residuals as a function of “fitted values", or model predictions for the x-values obseved in the actual data
set.

• Residuals as a function of the observed values of the explanatory variable (from the actual data set).

• Normal quantile-quantile plot of the residuals (note: in Chapter 4, we made these by hand for any
distribution; you may also use the shortcut function qqmath() as illustrated below, to make them for the
Normal distribution.)

• Residuals as a function of time (if you know the order in which they were collected, or if the explanatory
variable is a time-related one).

• Residual autocorrelation function plot (if the data points were collected over time, or if the explanatory
variable is a time-related one).

For all the scatter plots, we want to make sure the residuals “look random" – the extent of the spread of the
residuals should not vary with time or x or y (“trumpet"-shaped plot). If there is a pattern, it suggests a problem
with the homoscedasticity assumption. There should not be long runs of similar residuals, especially over time;
if there are, it suggests non-independence of the residuals. There should also be no apparent trends in the plot,
linear or non-linear; if there are, it suggests that the relationship between the predictor and response variables
was not linear. In an autocorrelation plot, the correlation coefficients (except for lag 0) should not be too large,
far exceeding the dotted guide-lines on the plot; if they are, there is probably a problem with the independence
assumption.

Example 7.5.1. Returning to our OSA data, we can obtain the residuals using the resid() function and
plot them.

osa.hat <- makeFun(osa.model)
preds <- osa.hat(Eyes$palpebral)
gf_point( resid(osa.model) ~ preds, data = Eyes,

title ="Residuals versus fitted values")
gf_qq( ~ resid(osa.model), data = Eyes, title = "Normal QQ plot")
gf_point(resid(osa.model) ~ palpebral, data = Eyes,

title = "Residuals versus explanatory variable")
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If the assumptions of the model are correct, there should be no distinct patterns to these scatter plots of the
residuals, and the normal-quantile plot should be roughly linear (since the model says that differences between
observed responses and the true linear fit should be random noise following a normal distribution with constant
standard deviation).

In this case things look pretty good.

We can save ourselves a little typing if we create these plots using plot() or mplot().
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mplot(osa.model, w = 1:2)

## [[1]]

## ‘geom_smooth()‘ using formula ’y ~ x’

##
## [[2]]
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The “standardized" residuals are the residuals that have been adjusted to have an expected variance (and hence
also standard deviation) of 1. Roughly, they are the residuals divided by σ̂, but there is an additional adjustment
that is made as well. This gives us a kind of unitless version of the residual and the normal-quantile plot using
standardized residuals does a better job of indicating whether the normality assumption is compatibly with the
data. (Remember, the normality assumption is about the errors not the residuals. The standardized residuals
should behave roughly like a normal distribution if the errors are normally distributed.) Typically the shape
of the normal-quantile plot made with raw residuals and the one made with standarized residuals will be very
similar.

7.5.4 Outliers in Regression

Outliers can be very influential in regression, especially in small data sets, and especially if they occur for
extreme values of the explanatory variable. Outliers cannot be removed just because we don’t like them, but
they should be explored to see what is going on (data entry error? special case? etc.)

Some researchers will do “leave-one-out” analysis, or “leave some out” analysis where they refit the regression
with each data point left out once. If the regression summary changes very little when we do this, this means
that the regression line is summarizing information that is shared among all the points relatively equally. But
if removing one or a small number of values makes a dramatic change, then we know that that point is exerting
a lot of influence over the resulting analysis (a cause for caution).

This kind of analysis can be very helpful, especially if you have one or several large potential outliers in your
data set, but in this class, we will not generally do it as a matter of course (it’s not a required part of model
assessment for coursework).
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7.6 How Good Are Our Estimates?

Assuming our diagnostics indicate that fitting a linear model is reasonable for our data, our next question is
How good are our estimates? Notice that there are several things we have estimated:

• The intercept coefficient β0 [estimate: β̂0]

• The slope coefficient β1 [estimate: β̂1]

• Values of y for given values of x. [estimate: ŷ = β̂0 + β̂1x]

We would like to be able to compute uncertainties and confidence intervals for these. Fortunately, R makes this
straightforward.

7.6.1 Estimating the βs

Example 7.6.1. Q. Returning to the OSA data, compute standard uncertainties and 95% confidence intervals
for β0 and β1.

A. The summary() function provides additional information about the model:

summary(osa.model)

##
## Call:
## lm(formula = OSA ~ palpebral, data = Eyes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.609 -0.199 -0.019 0.217 0.664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.398 0.168 -2.37 0.025
## palpebral 3.080 0.151 20.45 <2e-16
##
## Residual standard error: 0.308 on 28 degrees of freedom
## Multiple R-squared: 0.937,Adjusted R-squared: 0.935
## F-statistic: 418 on 1 and 28 DF, p-value: <2e-16

We don’t know what to do with all of the information displayed here, but we can see some familiar things in
the coefficient table. If we only want the coefficients part of the summary output we can get that using

coef(summary(osa.model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3977 0.1680 -2.367 2.506e-02
## palpebral 3.0800 0.1506 20.453 2.253e-18

From this we see the estimates (β̂’s) displayed again. Next to each of those is a standard error. That is the
standard uncertainty for these estimates. So we could report our estimated coefficients as

β0 : −0.40± 0.17 β1 : 3.08± 0.15
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A confidence interval can be computed using
β̂i ± t∗SEβi

because

• the sampling distribution for β̂i is normal,

• the sampling distribution for β̂i is unbiased (the mean is βi), and

• the standard deviation of the sampling distribution depends on σ (and some other things), but

• we don’t know σ, so we have to estimate it using RMSE =
√
MSE.

t.star <- qt(.975, df = 28); t.star # n-2 degrees of freedom for simple linear regression

## [1] 2.048

t.star * 0.151

## [1] 0.3093

So a 95% confidence interval for β1 is
3.08± 0.31

The degrees of freedom used are DFE = n − 2, the same as used in the estimate of σ2. (We are using a
t-distribution instead of a normal distribution because we don’t know σ. The degrees of freedom are those
associated with using RMSE =

√
MSE as our estimate for σ.)

R can compute confidence intervals for both parameters using the function confint():

confint(osa.model)

## 2.5 % 97.5 %
## (Intercept) -0.7419 -0.05359
## palpebral 2.7715 3.38843

A 68% confidence interval should have a margin of error of approximately 1 standard uncertainty:

confint(osa.model, level = 0.68, "palpebral")

## 16 % 84 %
## palpebral 2.928 3.232

(3.2325 - 2.9275) / 2 # margin of error

## [1] 0.1525

coef(summary(osa.model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3977 0.1680 -2.367 2.506e-02
## palpebral 3.0800 0.1506 20.453 2.253e-18
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7.6.2 Confidence and Prediction Intervals for the Response Value

We can also create interval estimates for the response. R will compute this if we simply ask:

estimated.osa <- makeFun(osa.model)
estimated.osa(1.2, interval = "confidence")

## fit lwr upr
## 1 3.298 3.174 3.422

estimated.osa(0.8, interval = "confidence")

## fit lwr upr
## 1 2.066 1.927 2.205

These intervals are confidence intervals for the mean response. Sometimes it is desirable to create an interval
that will have a 95% chance of containing a new observation – that is, including the anticipated error as well
as the mean response. These intervals are called prediction intervals to distinguish them from the usual
confidence interval.

estimated.osa <- makeFun(osa.model)
estimated.osa(1.2, interval = "prediction")

## fit lwr upr
## 1 3.298 2.655 3.941

estimated.osa(0.8, interval = "prediction")

## fit lwr upr
## 1 2.066 1.42 2.712

Prediction intervals are typically much wider than confidence intervals. We have to “cast a wider net" to create
an interval that is highly likely to contain a new observation (which might be quite a bit above or below the
mean).

The widths of both types of intervals depend on the value(s) of the explanatory variable(s) from which we
are making the estimate. Estimates are more precise near the mean of the predictor variable and become less
precise as we move away from there. Extrapolation beyond the observed data range is both less precise, and
risky, because we don’t have data to know whether the linear pattern seen in the data extends into that region.

The plot below illustrates both confidence (dotted) and prediction (dashed) intervals. Notice how most of the
dots are within the prediction bands, but not within the confidence bands.

gf_point(OSA ~ palpebral, data = Eyes) %>%
gf_lm(interval = "confidence") %>%
gf_lm(interval = "prediction")
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A Caution Regarding Prediction Intervals

Prediction intervals are much more sensitive to the normality assumption than confidence intervals are because
the Central Limit Theorem does not help when we are thinking about individual observations (essentially
samples of size 1). So if the true distribution of errors is not really normal, then the prediction intervals we
compute using the normality assumption will not be accurate.
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7.7 Exercises

7.1 Use the output below to answer some questions about rainfall volume and runoff volume (both in m3) for
a particular stretch of a Texas highway.

##
## Call:
## lm(formula = runoff ~ rainfall, data = TexasHighway)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.28 -4.42 1.21 3.15 8.26
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1283 2.3678 -0.48 0.64
## rainfall 0.8270 0.0365 22.64 7.9e-12
##
## Residual standard error: 5.24 on 13 degrees of freedom
## Multiple R-squared: 0.975,Adjusted R-squared: 0.973
## F-statistic: 513 on 1 and 13 DF, p-value: 7.9e-12

a) How many times were rainfall and runoff recorded?

b) What is the equation for the least squares regression line?

c) Report the slope together with its standard uncertainty.

d) Give a 95% confidence interval for the slope of this line.

e) What does this slope tell you about runoff on this stretch of highway?

f) What is σ̂?

7.2 The KidsFeet data set contains variables giving the widths and lengths of feet of some grade school kids.

a) Perform our usual diagnostics to see whether there are any reasons to be concerned about using a simple
linear model in this situation.

b) Based on this data, what estimate would you give for the width of a Billy’s foot if Billy’s foot is 24 cm
long? (Use a 95% confidence level.)

c) Based on this data, what estimate would you give for the average width of a kids’ feet that 24 cm long?
(Use a 95% confidence level.)

7.3 Some traffic engineers were interested to study interactions between bicycle and automobile traffic. One
part of the study involved comparing the amount of “available space” for a bicyclist (distance in feet from bicycle
to centerline of the roadway) and “separation distance” (the average distance between cyclists and passing car,
also measured in feet, determined by averaging based on photography over an extend period of time). Data
were collected at 10 different sites with bicycle lanes. The data are available in the ex12.21 data set in the
Devore7 package.
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a) Write out an equation for the least squares regression line for predicting separation distance from available
space.

b) Give an estimate (with uncertainty) for the slope and interpret it.

c) A new bicycle lane is planned for a street that has 15 feet of available space. Give an interval estimate for
the separation distance on this new street. Should you use a confidence interval or a prediction interval?
Why?

d) Give a scenario in which you would use the other kind of interval.

7.4 Select only the non-diabetic men from the pheno data set using

library(fastR2)
Men <- Pheno %>% filter(sex=="M" & t2d=="control") # note the double == and quotes here
head(Men, 3)

## id t2d bmi sex age smoker chol waist weight height whr sbp dbp
## 1 1012 control 30.47 M 53.86 former 5.02 104 94.6 176.2 0.9327 143 89
## 2 1110 control 26.75 M 68.08 never 5.63 99 81.0 174.0 0.9252 162 91
## 3 1146 control NA M 62.15 <NA> NA NA NA NA NA NA NA

This data set contains some phenotype information for subjects in a large genetics study. You can find out more
about the data set with

?pheno

a) Using this data, fit a linear model that can be used to predict weight from height. What is the equation
of the least squares regression line?

b) Give a 95% confidence interval for the slope of this regression and interpret it in context. (Hint: what are
the units?)

c) Give a 95% confidence interval for the mean weight of all non-diabetic men who are 6 feet tall.

Note the heights are in cm and the weights are in kg, so you will need to convert units to use inches and
pounds. (2.54 cm per inch, 2.2 pounds per kg)

d) Perform regression diagnostics. Is there any reason to be concerned about this analysis?

7.5 The anscombe data set contains four pairs of explanatory (x1, x2, x3, and x4) and response (y1, y2, y3,
and y4) variables. These data were constructed by Anscombe [Ans73].

a) For each of the four pairs, us R to fit a linear model and compare the results. Use, for example,

model1 <- lm(y1 ~ x1, data = anscombe); summary(model1)

Briefly describe what you notice looking at this output. (You do not have to submit the output itself –
let’s save some paper.)
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b) For each model, create a scatterplot that includes the regression line. (Make the plots fairly small and
submit them. Use fig.width and fig.height or “output options" (the little gear icon) to control the
size of the plots in RMarkdown.)

c) Comment on the results. Why do you think Anscombe invented these data?

7.6 Find an article from the engineering or science literature that uses a simple linear model and report the
following information:

a) Print the first page of the article (with title and abstract) and write a full citation for the article on it.
Staple this at the end of your assigment.

b) If the article is available online, provide a URL where it can be found. (You can write that on the printout
of the first page of the article, too.)

c) How large was the data set used to fit the linear model? How do you know? (How did the authors
communicate this information?)

d) What are the explanatory and response variables?

e) Did the paper give an equation for the least squares regression line (or the coefficients, from which you
can determine the regression equation)? If so, report the equation

f) Did the paper show a scatter plot of the data? Was the regression line shown on the plot?

g) Did the paper provide confidence intervals or uncertainties for the coefficients in the model?

h) Did the paper show any diagnostic plots (normal-quantile, residuals plots, etc.)? If not, did the authors
say anything in the text about checking that a linear model is appropriate in their situation?

i) What was the main conclusion of the analysis of the linear model?

j) If there is an indication that the data are available online, let me know where in case we want to use these
data for an example.

Google scholar might be a useful tool for this. JSTOR (available through Heckman Library) also has a large
number of scientific articles. Or you might ask an engineering or physics professor for an appropriate engineering
journal to page through in the library. Since the chances are small that two students will find the same article
if working independently, I expect to see lots of different articles used for this problem.

If your article looks particularly interesting or contains statistical things that you don’t understand but would
like to understand, let me know, and perhaps we can do something later in the semester with your article. It’s
easiest to do this if you can give me a URL for locating the paper online.

7.7 High population density in Japan leads to many resource usage problems, including human waste removal.
In a study of a new (in the 1990’s) copression machine for processing sewage sludge, researchers measures the
moisture content of the compressed pellets (%) and the machines filtration rate (kg-DS/m/hr). You can load
the data using

data(xmp12.06, package = "Devore7")

a) What are the least squares estimates for the intercept and slope of a line that can be used to estimate
the moisture content from the filtration rate? (Give them in our usual manner with both estimate and
uncertainty.)
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b) The first row of the data is

head(xmp12.06, 1)

## moistcon filtrate
## 1 77.9 125.3

Compute the residual for this observation.

c) What is σ̂, the estimated value of σ?

d) Give a 95% confidence interval for the slope.

e) Give a 95% confidence interval for the mean moisture content when the filtration rate is 170 kg-DS/m/hr.
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8
Beyond Linear Regression

8.1 How big is your R2?

One part of regression model diagnostics is to check the fitted model’s R2 value, which gives an indication of
the proportion of the variance in the response that has been "explained" by the model. A low value (closer
to 0) means that data points are spread far around the best fit line; a high one (close to 1) means that data
points are clustered very tightly around the line. A model with a low R2 value is not necessarily "bad" – it may
still provide helpful information about a real relationship between your response and predictor. However, that
relationship is very "noisy," which means that your model will have poor predictive power – it will be unable
to make predictions with the accuracy and precision you might hope for.

Often, the predictive power of a model, and the R2 value, can be improved by adding additional explanatory
variables – that is, fitting a model with more than one explanatory variable. It could have two predictors, three,
or as many as you can (sensibly) come up with. This kind of model is called multiple regression. Mathematically,
it means fitting a model of the form:

y β0 + β1 ∗ x1 + β2 ∗ x2 + β3 ∗ x3...

Multiple regression often makes sense when you are studying a complex process where there is most likely "more
than one thing going on." For example, you might consider modelling population growth rates worldwide using
a data set including a set of social, economic, health, and political indicators compiled using data from the
World Health Organization and partner organizations. The dataset description is available online: http://
www.exploredata.net/Downloads/WHO-Data-Set. One idea might be to look for a linear relationship between
per-capita income and population growth rate:

whodat <- read.csv("http://www.exploredata.net/ftp/WHO.csv",
header = TRUE, strip.white = TRUE, sep = ",")

#simplify some variable names
names(whodat)[10] <- "PopGrowthRate"
names(whodat)[6] <- "IncomePerCapita"
names(whodat)[7] <- "FemaleSchoolEnrollment"
gf_point(PopGrowthRate ~ IncomePerCapita, data = whodat)

## Warning: Removed 24 rows containing missing values (geom_point).

who.m1 <- lm(PopGrowthRate ~ IncomePerCapita, data = whodat)
summary(who.m1)
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##
## Call:
## lm(formula = PopGrowthRate ~ IncomePerCapita, data = whodat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6805 -0.7100 -0.0201 0.7073 2.7894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.66e+00 1.05e-01 15.81 < 2e-16
## IncomePerCapita -2.87e-05 6.22e-06 -4.61 7.7e-06
##
## Residual standard error: 1.04 on 176 degrees of freedom
## (24 observations deleted due to missingness)
## Multiple R-squared: 0.108,Adjusted R-squared: 0.103
## F-statistic: 21.2 on 1 and 176 DF, p-value: 7.72e-06
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The R2 value of this model is very low. But that could be because, unsurprisingly, there are many fac-
tors contributing to population growth rate, not just income. For example, what about education? Perhaps
more-educated women have fewer children, lowering the population growth rate. So we might want to model
population growth rate as a function of both income and education.

In R, a multiple regression model can be fitted with a call to lm(). We just add additional predictors to the right
hand side of the model formula, separated by + signs. For the WHO example discussed above, for example, we
could try:

gf_point(PopGrowthRate ~ FemaleSchoolEnrollment, data = whodat)

## Warning: Removed 23 rows containing missing values (geom_point).

who.m2 <- lm(PopGrowthRate ~ IncomePerCapita + FemaleSchoolEnrollment, data = whodat)
summary(who.m2)

##
## Call:
## lm(formula = PopGrowthRate ~ IncomePerCapita + FemaleSchoolEnrollment,
## data = whodat)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -2.4337 -0.5298 0.0602 0.5662 2.4805
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.10e+00 3.63e-01 11.29 < 2e-16
## IncomePerCapita -1.10e-05 6.03e-06 -1.83 0.069
## FemaleSchoolEnrollment -3.10e-02 4.50e-03 -6.89 1.1e-10
##
## Residual standard error: 0.909 on 167 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.31,Adjusted R-squared: 0.302
## F-statistic: 37.5 on 2 and 167 DF, p-value: 3.48e-14
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We would need to follow up with our diagnostics to fully assess these two models, but comparison of the R2

values immediately shows that R2 is much higher for the second model. In other words, the multiple regression
has succeeded in explaining more of the variance in population growth rates than the simple linear regression
with only one predictor.

8.2 Violations of Linear Regression Assumptions

In the previous chapter, we learned how to carry out regression diagnostics – to check whether or not the
assumptions of linear regression analysis were valid for a particular analysis. If the assumptions are violated,
then the conclusions (parameter estimates, but especially standard errors) will be incorrect, and the model
results can not be trusted.

For each type of violation, there are some fixes or modifications we can try in order to fit a valid, trustworthy
model to our data and still draw reliable conclusions. In this course, we will focus mainly on type of "fix":
applying transformations to linearize non-linear relationships, and allow us to apply linear regression to the
transformed data. This approach is covered in detail in the rest of this chapter.

Before beginning our detailed discussion of transformation, we will briefly discuss several other types of "fixes".
The mathematical foundations of these more complex models are essentially beyond the scope of this class, but
you should understand when they might be useful (for example, if you see a certain type of pattern in residual
diagnostic plots, which technique might help solve the problem?) and be able to implement them in R.

The table below provides an overview of various problems you might uncover as you do regression diagnostics,
along with possible solutions. Each entry in the table is covered in a bit more detail in the subsequent sections
of this chapter.
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Assumption Description of Problem Options

Linearity Scatterplot (or residual plots) in-
dicate nonlinear relationship

Transform explanatory and or response
variables. Alternative: fit a non-linear
model using the R function nls()

Independence of errors ACF plot indicates strong de-
pendence of errors over time (or
space)

Fit an “autoregressive" model, where
this relationship between subsequent or
nearby measurements is expected and ac-
counted for. To do this in R, replace
lm(y∼x) with something like gls(y∼x,
correlation = corAR1(form = ∼1)).

Normality of errors Residual QQ plots indicates de-
parture from normality

First check if other assumptions may also
be violated, and try options listed there.
If that fails, you may need to add addi-
tional predictor variables to your model;
or to fit a generalized linear model, a more
sophisticated type of regression that we
will not cover in this course.

Equal Variance
(homeoskedasticity)

Variance of errors is not constant
over the full range of response val-
ues, or over time

First, make sure that the linearity as-
sumption is not violated. Next, if you
have the option of including additional
predictors in your model, it may be help-
ful. Next, transforming the response vari-
able may help. Finally, if none of those
options provide a solution, you can fit a
model with non-constant error variance.
For example, if variance increases with
fitted response values, you can replace
lm(y∼x) with something like nls(y∼x,
weights = varPower())

8.3 Non-Normal Errors

Sometimes, during diagnostics for a linear regression model, you will find that residual quantile-quantile plots
indicate that linear regression residuals are far from normally distributed. In this case, before trying to modify
your model in any way, it is useful to check whether any other assumptions of the linear regression have also
been violated. If they have, it is worthwhile to try to deal with those problems first, and see if solving them
makes the residuals more normal.

If non-normal residuals are the only apparent problem with a linear regression model, adding additional ex-
planatory variables might help in some cases. Most of the time, you would have to turn to a more sophisticated
regression model called a generalized linear model (GLM). Fitting GLMs is beyond the scope of this class, and
you will not be asked to do it.

8.4 Non-Independence of Errors

Sometimes, regression diagnostics (particularly a plot of residuals as a function of time, or an ACF plot) will
show that the residuals are not independent. This happens most often when the predictor variable is a temporal
or spatial one; data points collected at similar times, or similar locations, are often similar to each other rather
than independent.
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We will consider a simple example using the price of chicken over time (in constant dollars, adjusted for inflation
over time). It seems to make sense to try to predict the price of chicken as a function of time (it’s been getting
progressively cheaper for the last century or so):

chickn <- read.csv("https://sldr.netlify.app/data/chickn.csv")
gf_point(Price ~ Year, data = chickn ) %>% gf_lm()
chick.mod <- lm(Price ~ Year, data = chickn)
summary(chick.mod)

##
## Call:
## lm(formula = Price ~ Year, data = chickn)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57.07 -20.23 -4.75 13.20 79.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5792.692 329.995 17.6 <2e-16
## Year -2.912 0.168 -17.3 <2e-16
##
## Residual standard error: 28.5 on 68 degrees of freedom
## Multiple R-squared: 0.815,Adjusted R-squared: 0.812
## F-statistic: 299 on 1 and 68 DF, p-value: <2e-16
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However, there seems to be a problem with non-independence of the residuals. Price is not independent from
year to year; if you know the price was a bit high one year, it’s likely to remain so for the next several years:

acf(resid(chick.mod))
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This is a big problem, because it tends to result in standard error estimates that are artificially small. In other
words: we think we have estimated our slope and intercept parameters much more precisely than we really
have, and would report falsely narrow confidence intervals. To fix the problem, we can consider replacing our
simple linear regression:

y β0 + β1x+ ε

(where ε ∼ N(0, σ)) with a model that expects that subsequent residuals to depend on previous ones, so that
the residual for the data point collected at time t is:

et = ρet−1 + ε

(where, still, ε ∼ N(0, σ); and ρ is a new parameter indicating how strong the dependence over time is.) This
is called an AR(1) process, or an auto-regressive process of order 1. It can be fit easily in R using the function
gls() instead of lm(). gls() does "generalized least-squares" fitting, and is found in the package nlme. The
function call syntax illustrated in this example will work any time the explanatory variable is the time (or space)
one that is causing the non-independence.

require(nlme)
chick.mod2 <-
gls(Price ~ Year, data = chickn, correlation = corAR1(form = ~ 1))

summary(chick.mod2)

## Generalized least squares fit by REML
## Model: Price ~ Year
## Data: chickn
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## AIC BIC logLik
## 557.8 566.7 -274.9
##
## Correlation Structure: AR(1)
## Formula: ~1
## Parameter estimate(s):
## Phi
## 0.9483
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 4764 1600.4 2.977 0.0040
## Year -2 0.8 -2.921 0.0047
##
## Correlation:
## (Intr)
## Year -1
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.0594 -0.5673 -0.1571 0.3361 2.0992
##
## Residual standard error: 41.39
## Degrees of freedom: 70 total; 68 residual

If you plot the residuals of this new model, and plot the ACF, you will see that the correlation coefficients
still have high vaules. However, in the new gls() fit, this correlation has now been taken into account in the
standard errors (which are larger – compare the coefficient tables to verify it), so it is OK now to trust the
model parameter estimates and predictions.

8.5 Heteroscedasticity (Non-constant Error Variance)

Sometimes, model diagnostics for a linear regression indicate that variance of errors is not constant over the
full range of response values. Often, it is the case that the error variance grows larger as the predicted response
value grows larger, resulting in a "trumpet-like" shape in the plot of residuals versus fitted values.

If you spot this problem, first, make sure that the linearity assumption is not violated. Next, if you have the
option of including additional predictors in your model, it may be helpful. Next, transforming the response
variable may help. Specifically, a log or square-root transformation of the response variable may be useful. (See
more details and examples later in this chapter, when transformations are discussed in detail.)

Finally, if none of the previous options provide a solution, you can fit a model that actually expects and accounts
for non-constant error variance. We will not cover this topic in any detail, but this brief example is included
for your future reference (outside this class). Example: if variance increases with fitted response values, you
can fit an appropriate model with the gls function from the nlme package. To do so, replace lm(y x) with
something like nls(y x, weights = varPower()).

Here is a brief example, using the Ornstein dataset from the car package. It gives data on 248 Canadian
companies, collected in the mid-1970s. The variable assets gives each company’s assets in millions of dollars,
and interconnects gives the number of director and executive positions that are shared with other firms. A
scatter plot shows that the richest companies have many of these "interlocks", so we might model assets as a
function of interlocks...however, the residuals have non-constant variance:
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require(car)
gf_point(assets ~ interlocks, data = Ornstein)
om <- lm(assets ~ interlocks, data = Ornstein)
gf_point(resid(om) ~ fitted(om))
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We can try to correct for this problem by fitting a model that "expects" this non-constant variance, by using
the function gls with the input weights = varPower(). (There are many other ways to model non-constant
error variance; this small example gives you just a taste, and for this course, you would not be expected to deal
with any cases other than ones like this, where error variance increases with fitted values.)

om2 <- gls(assets ~ interlocks, data = Ornstein, weights = varPower())

As with the non-independence case, if you plot the residuals for this model, you will see that they DO still have
non-constant variance...but again, now it is OK because our model has taken it into account, and computed
parameter estimates and standard errors appropriately.

8.6 Non-linear Relationships

The rest of this chapter will provide detailed information on how to deal with some non-linear relationships in
regression.

Linear regression assumes a linear relationship between predictor and response variables, but not all relation-
ships between pairs of quantitative variables are linear. There are two common ways to deal with nonlinear
relationships:

1. Transform the data before beginning linear regression analysis, so that there is a linear relationship
between the (transformed) variables.

2. Fit a model that explicitly expects, and accounts for, the nonlinear relationship between the two variables.

8.7 Transformations in Linear Regression

The applicability of linear models can be extended through the use of various transformations of the data. There
are several reasons why one might consider a transformation of the predictor or response (or both).

• To correspond to a theoretical model.
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Sometimes we have a priori information that tells us what kind of non-linear relationship we should
anticipate. For example, an experiment to estimate Planck’s constant (h̄) using LED lights and a voltage
meter is based on the relationship

Va =
h̄c

eλ
+ k

where Va is the activation voltage (the voltage at which the LED just begins to emit light), c is the speed
of light, e is the energy of an electron, λ is the frequency of the light emitted, and k is a constant that
relates to the energy losses inside the semiconductor’s p-n junction. If we take c and e as known for now
(in a fancier version we would work their uncertainties into this, too), we can design an experiment that
measures Va and λ for a number of different colors.

A little algebra gives us

Va =
h̄c

e
· 1

λ
+ k

So if we fit a model with Va as the response and 1
λ as the predictor, then the slope and intercept of the

resulting least squares regression line will give us and estimate for h̄c
e , from which we can solve for h̄.

(Note: if we know uncertainties for c, for e, and for the slope, we can compute an estimated uncertainty
for h̄ using our propagation of uncertainty methods.)

Theory says that a scatter plot of Va and 1/λ should form a straight line, so the the model we would fit
would look something like

lm(voltage ~ I(1/wavelength), data = mydata)

We need to wrap 1/lambda in I() because the arithmetic symbols ( +, -, *, /, and ^ have special meanings
inside the formula for a model. I() stands for inhibit special interpretation.

Notice that the intercpet is not directly involved in estimating h̄, but that we can’t fit the line and obtain
our slope without it.

Many non-linear relationships can be transformed to linearity. Exercise 8.3 presents several more examples
and asks you to determine a suitable transformation.

• To obtain a better fit.

If a scatterplot or residual plot shows a clearly non-linear pattern to the data, then it would be inappropri-
ate to fit a linear regression (and conclusions drawn from that model would be incorrect and misleading).
In the absence of theoretical reasons to expect a particular mathematical relationship between the vari-
ables being studied, we may select transformations based on the shape of the relationship as revealed in
a scatterplot. Section 8.7.3 provides some guidance for selecting transformations in this situation.

• To obtain better residual behavior.

Sometimes transformations are used to improve the agreement between the data and the assumptions
about the error terms in the model. For example, if the variance in the response appears to increases
as the predictor increases, a logarithmic or square root transformation of the response may decrease the
disparity in variance. Some transformations are used to improve the agreement between the data and the
assumptions about the error terms in the model. For example, if data are heteroscedastic – for example, if
the variance in the response appears to increase as the predictor increases – a logarithmic or square root
transformation of the response may help.

In practice, all three of these issues are intertwined. A transformation that improves the fit, for example,
may or may not have a good theoretical interpretation. Similarly, a transformation performed to achieve
homoskedasticity (equal variance; the opposite is called heteroskedasticity) may result in a fit that does
not match the overall shape of the data very well. Despite these potential problems, there are many situations
where a relatively simple transformation is all that is needed to greatly improve the model. Here, when we say
"improve" the model, we mean that the assumptions of the model are satisfied, and the model fits the data
acceptably well.
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8.7.1 Three Important Laws

In the sciences, relationships between variables based on some scientific theory are often referred to as “laws".
Many of these fall into one of three categories that are easily handled by transforming the data and fitting a
linear regression model.

Linear Laws

We’ve already talked about linear relationships, but it is worth mentioning them again because there are so
many situations in which a linear relationship arises.

Power Laws

Relationships of the form
y = Axp

are often called power laws. The two parameters are the exponent p and a constant of proportionality A. Power
laws can be linearized by taking logarithms:

log(y) = log(Axp) = log(A) + p log(x)

So if we fit a model of the form

lm(log(y) ~ log(x))

Then β0 = log(A) and β1 = p. If a power law is a good fit for the data then

gf_point( log(y) ~ log(x) )

will produce a roughly linear plot.

Fitting a power law results in estimates for the parameters β0 = log(A) and β1 = p. Note that we can use
logarithms with any base for this transformation. Typically natural logarithms are used (that’s what log()
does in R). In some specific applications we might use base 10 logarithms (log10() in R) or base 2 logarithms
(log2() in R); this yields the commonly used scale for β0 = log(A), the constant of proportionality.

Some common situations that are modeled with power laws include drag force vs speed, velocity vs. force, and
frequency vs. force.

Exponential Laws

Relationships of the form
y = ABx = AeCx

are often called exponential laws. The two parameters are the base B = eC and a constant of proportionality
A. Exponential laws can also be linearized by taking logarithms:

log(y) = log(ABx) = log(A) + x log(B)

So if we fit a model of the form
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lm(log(y) ~ x)

Then β0 = log(A) and β1 = log(B) = C. If an exponential law is a good fit for the data then

gf_point( log(y) ~ x )

will produce a roughly linear plot.

Fitting an exponential law results in estimates for the parameters β0 = log(A) and β1 = log(B) = C. Again,
we will generally use natural logarithms. In this course, if you see a log() without an indication of the base of
the logartihm, you can assume it is base "e", a natural logarithm. Similarly, remember that for R, the function
log() takes the natural logarithm.

Some common situations that are modeled with exponential laws include population growth and radioactive
decay. Note that exponential growth models are typically only good approximations over a limited range since
exponential functions eventually grow quickly, and often some external constraints will limit this growth. For
example, a culture of bacteria may grow roughly exponentially for a while, but eventually, limits on space and
nourishment will make it impossible for exponential growth to continue.

Log-log and semi-log plots

Graphs of log(y) vs. log(x) (log-log) or log(y) vs x (semi-log) can be used to assess whether the power law or
exponential law appears to apply in a given situation. If the law were a perfect description of the situation, all
the points on the log-log or semi-log plot would fall along a straight line. In practice, the fit won’t be perfect,
but the plot is a useful diagnostic. For example, you can compare a plot of y as a function of x with a log-log
or semi-log plot, and see which one shows the most linear relationship between the two variables.

In the old days, before computers could readily transform the data, special graph paper was produced with
semi-log or log-log scales to facilitate this sort of plot. R can easily create plots with transformed scales. Use
gf_refine() with input scales_*_log10() to your call to gf_point(), as detailed in the example below:

x <- 1:10
y <- 3 * x^1.5
gf_point(log(y) ~ log(x))
gf_point(log(y) ~ x)
gf_point(y ~ x) %>%
gf_refine(scale_x_log10(), scale_y_log10())

gf_point(y ~ x) %>%
gf_refine(scale_y_log10())
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As expected, the log-log transformation makes things linear. Of course, with real data, the fit won’t be perfect
like this.

8.7.2 Other Models That Can Be Transformed to Linear

The three laws above are not the only kinds of relationships that can be transformed to linear.

Example 8.7.1. A chemical engineering text book suggest a law of the form

log(−dC
dt

) = log(k) + α log(C)

where C is concentration and t is time.

This is equivalent to

−dC
dt

= k · Cα

−
∫
C−α dC =

∫
k dt

− 1

1− α
C1−α = kt+ d

1

β
C−β = kt+ d

C−β = βkt+ βd

If we know β = α− 1 (i.e., if we know α), then we can fit a linear model using

lm(C^(-1/beta) ~ t)

The intercept of such a model will be βd and the slope will be βk, from which we can easily recover d and k.

Alternatively, if we know d = 0 (i.e., if we know that C = 0 when t = 0), then we can use

log(C−β) = −β log(C) = log(βkt) = log(βk) + log t

log(C) = − log(βk)

β
− 1

β
log t

Now if we fit a model of the form
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lm(C ~ log(t))

the intercept will be − log(βk)
β and the slope will be −1

β . From this we can solve for k and β.

Example 8.7.2. Continuing the previous example, we will fit the following data

Concentration <- data.frame(
time = c(0, 50, 100, 150, 200, 250, 300), # minutes
concentration = c(50, 38, 30.6, 25.6, 22.2, 19.5, 17.4) # mol/dm^3 * 10^3

)
gf_point(concentration ~ time, data = Concentration)
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under the assumption that α = 2, so β = 1. In this case, our relationship becomes

1

C
= −kt− d .

We can now fit a model and see how well it does.

conc.model <- lm(1/concentration ~ time, data = Concentration)
summary(conc.model)

##
## Call:
## lm(formula = 1/concentration ~ time, data = Concentration)
##
## Residuals:
## 1 2 3 4 5 6 7
## -1.18e-04 -4.14e-05 8.28e-05 2.26e-04 -3.13e-05 -3.40e-05 -8.45e-05
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.01e-02 8.76e-05 230 3.0e-11
## time 1.25e-04 4.86e-07 257 1.7e-11
##
## Residual standard error: 0.000129 on 5 degrees of freedom
## Multiple R-squared: 1,Adjusted R-squared: 1
## F-statistic: 6.59e+04 on 1 and 5 DF, p-value: 1.7e-11

confint(conc.model)
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## 2.5 % 97.5 %
## (Intercept) 0.0198923 0.020343
## time 0.0001235 0.000126

This provides estimates for the intercept −βd and the slope −βk of our model. We can divide by −β to obtain
estimates for d and k.

Of course, we should always look to see whether the fit is a good fit.

gf_point(resid(conc.model) ~ fitted(conc.model))
gf_qq( ~ resid(conc.model)) %>% gf_qqline()
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Notice that these residuals are very small relative to the values for concentration. (We can see this from the
vertical scale of the plot and also from the small value for residual standard error in the summary output.)
The shape of the residual plot would be more disturbing if the magnitudes were larger and if there were more
data. As is, even if there is some systematic problem, it is roughly five orders of magnitude smaller than our
concentration measurements, which likely can’t be measured to that degree of accuracy.

If we want to show the fit on top of the original data, we must remember to untransform the response, since
the model we fitted is a model for 1/C, but we want to show a model for C:

gf_point( concentration ~ time, data = Concentration ) %>%
gf_line( 1/fitted(conc.model) ~ time, data = Concentration)
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Figure 8.1: Bulge rules and ladder of re-expression.

8.7.3 The Ladder of Re-expression

Sometimes we have data for which there is no theory (yet) to suggest the form of a model. In such a case,
we may let the data help suggest a model. If we find a model that fits well, we can return to the question of
whether there is an explanation for that type of model.

In the 1970s, Mosteller and Tukey introduced what they called the ladder of re-expression and bulge rules
[?, MT77] that can be used to suggest an appropriate transformation to improve the fit when the relationship
between two variables (x and y in our examples) is monotonic and has a single bend. Their idea was to apply a
power transformation to x or y or both – that is, to work with xa and yb for an appropriate choice of a and b.
Tukey called this ordered list of transformations the ladder of re-expression. The identity transformation has
power 1. The logarithmic transformation is a special case and is included in the list associated with a power of
0. The direction of the required transformation can be obtained from Figure 8.1, which shows four bulge types,
represented by the curves in each of the four quadrants. A bulge can potentially be straightened by applying a
transformation to one or both variables, moving up or down the ladder as indicated by the arrows. More severe
bulges require moving farther up or down the ladder. A curve bulging in the same direction as the one in the
first quadrant of Figure 8.1, for example, might be straightened by moving up the ladder of transformations for
x or y (or both), while a curve like the one in the second quadrant, might be straightened by moving up the
ladder for y or down the ladder for x.

This method focuses primarily on transformations designed to improve the overall fit. The resulting models
may or may not have a natural, or obvious, interpretation. These transformations also affect the shape of the
distributions of the explanatory and response variables and, more importantly, of the residuals from the linear
model (see Exercise 8.5). When several different transformations lead to reasonable linear fits, these other
factors may lead us to prefer one over another.

Example 8.7.3. Q. The scatterplot in Figure 8.2 shows a curved relationship between x and y. What
transformations of x and y improve the linear fit?

A. This type of bulge appears in quadrant IV of Figure 8.1, so we can hope to improve the fit by moving up the
ladder for x or down the ladder for y. As we see in Figure 8.3, the fit generally improves as we move down and
to the right – but not too far, lest we over-correct. A log-transformation of the response (a = 1, b = 0) seems
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Figure 8.2: A scatterplot illustrating a non-linear relationship between x and y.

to be especially good in this case. Not only is the resulting relationship quite linear, but the residuals appear
to have a better distribution as well.

Example 8.7.4. Some physics students conducted an experiment in which they dropped steel balls from
various heights and recorded the time until the ball hit the floor. We begin by fitting a linear model to this
data.

ball.model <- lm(time ~ height, data = BallDrop)
summary(ball.model)

##
## Call:
## lm(formula = time ~ height, data = BallDrop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.020011 -0.008938 0.000162 0.008202 0.018652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19024 0.00430 44.2 <2e-16
## height 0.25184 0.00552 45.7 <2e-16
##
## Residual standard error: 0.0101 on 28 degrees of freedom
## Multiple R-squared: 0.987,Adjusted R-squared: 0.986
## F-statistic: 2.08e+03 on 1 and 28 DF, p-value: <2e-16

gf_point(time ~ height, data = BallDrop) %>% gf_lm()
gf_point(resid(ball.model) ~ fitted(ball.model))
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Figure 8.3: Using the ladder of re-expression to find a better fit.
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At first glance, the large value of r2 and the reasonably good fit in the scatterplot might leave us satisfied
that we have found a good model. But a look at the residual plot reveals a clear curvilinear pattern in this
data. A knowledgeable physics student knows that (ignoring air resistance) the time should be proportional to
the square root of the height. This transformation agrees with Tukey’s ladder of re-expression, which suggests
moving down the ladder for height or up the ladder for time.

ball.modelT <- lm(time ~ sqrt(height), data = BallDrop)
summary(ball.modelT)

##
## Call:
## lm(formula = time ~ sqrt(height), data = BallDrop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.008777 -0.003885 0.000057 0.003056 0.012555
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01608 0.00408 3.94 5e-04
## sqrt(height) 0.43080 0.00486 88.58 <2e-16
##
## Residual standard error: 0.00523 on 28 degrees of freedom
## Multiple R-squared: 0.996,Adjusted R-squared: 0.996
## F-statistic: 7.85e+03 on 1 and 28 DF, p-value: <2e-16

gf_point(time ~ sqrt(height), data = BallDrop) %>%
gf_lm(time ~ sqrt(height), data = BallDrop)

gf_point(resid(ball.modelT) ~ fitted(ball.modelT))
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This model does indeed fit better, but the residual plot indicates that there may be some inaccuracy in the
measurement of the height. In this experiment, the apparatus was set up once for each height and then several
observations were made. So any error in this set-up affected all time measurements for that height in the same
way. This could explain why the residuals for each height are clustered the way they are since it violates the
assumption that the errors are independent. (See Example 8.7.5 for a simple attempt to deal with this problem.)

Example 8.7.5. One simple way to deal with the lack of independence in the previous example is to average
all the readings made at each height. (This works reasonably well in our example because we have nearly equal
numbers of observations at each height.) We pay for this data reduction in a loss of degrees of freedom, but it
may be easier to justify that the errors in average times at each height are independent (if we believe that the
errors in the height set-up are independent and not systematic).

BallDropAvg <- BallDrop %>%
group_by(height) %>%
dplyr::summarize(time = mean(time))

ball.modelA <- lm(time ~ sqrt(height), data = BallDropAvg)
summary(ball.modelA)

##
## Call:
## lm(formula = time ~ sqrt(height), data = BallDropAvg)
##
## Residuals:
## 1 2 3 4 5 6
## 0.003955 -0.004032 0.002823 -0.005172 0.000157 0.002269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01608 0.00740 2.17 0.096
## sqrt(height) 0.43080 0.00882 48.86 1e-06
##
## Residual standard error: 0.00424 on 4 degrees of freedom
## Multiple R-squared: 0.998,Adjusted R-squared: 0.998
## F-statistic: 2.39e+03 on 1 and 4 DF, p-value: 1.05e-06

gf_point(time~ height, data = BallDropAvg) %>% gf_lm()
gf_point(resid(ball.modelA) ~ fitted(ball.modelA))
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Using a square root transformation on averaged height measurements in the BallDrop data gives a similar fit
but a very different residual plot. The interpretation of this model is also different.

Notice that the parameter estimates are essentially the same as in the preceding example. The estimate for σ
has decreased some. This makes sense since we are now estimating the variability in averaged measurements
rather than in individual measurements.

Of course, we’ve lost a lot of degrees of freedom, and as a result, the standard error for our parameter estimate
is about twice as large as before. This might have been different; had the mean values fit especially well, our
standard error might have been smaller despite the reduced degrees of freedom.

One disadvantage of the data reduction is that it is hard to interpret the residuals (because there are fewer of
them). At first glance there appears to be a downward trend in the residuals, but this is largely driven by the
fact that the largest residual happened to be for the smallest fit.

Example 8.7.6. Q. Rex Boggs of Glenmore State High School in Rockhampton, Queensland, had an
interesting hypothesis about the rate at which bar soap is used in the shower. He writes:

I had a hypothesis that the daily weight of my bar of soap [in grams] in my shower wasn’t a linear
function, the reason being that the tiny little bar of soap at the end of its life seemed to hang around
for just about ever. I wanted to throw it out, but I felt I shouldn’t do so until it became unusable.
And that seemed to take weeks.

Also I had recently bought some digital kitchen scales and felt I needed to use them to justify the
cost. I hypothesized that the daily weight of a bar of soap might be dependent upon surface area,
and hence would be a quadratic function . . . .

The data ends at day 22. On day 23 the soap broke into two pieces and one piece went down the
plughole.

The data indicate that although Rex showered daily, he failed to record the weight for some of the days.

What do the data say in regard to Rex’s hypothesis?

A. Rex’s assumption that weight should be a (quadratic) function of time does not actually fit his intuition. His
intuition corresponds roughly to the differential equation

∂t

∂W
= kW 2/3 ,

for some negative constant k since the rate of change should be proportional to the surface area remaining. (We
are assuming that the bar shrinks in such a way that its shape remains proportionally unaltered.) Solving this
equation (by separation of variables) gives

W 1/3 = kt+ C .

We can fit untransformed and transformed models (weight^(1/3) ~ day) to this data and compare.
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soap.model1 <- lm(weight ~ day, data = Soap)
summary(soap.model1)

##
## Call:
## lm(formula = weight ~ day, data = Soap)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.244 -1.295 0.308 1.394 5.504
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 123.141 1.382 89.1 <2e-16
## day -5.575 0.107 -52.2 <2e-16
##
## Residual standard error: 2.95 on 13 degrees of freedom
## Multiple R-squared: 0.995,Adjusted R-squared: 0.995
## F-statistic: 2.72e+03 on 1 and 13 DF, p-value: <2e-16

The scatterplot in Figure 8.4 (darker line) indicate that the untransformed model is already a good fit.

soap.model2 <- lm(I(weight^(1/3)) ~ day, data = Soap)
summary(soap.model2)

##
## Call:
## lm(formula = I(weight^(1/3)) ~ day, data = Soap)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.311 -0.137 0.016 0.150 0.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.29771 0.08381 63.2 < 2e-16
## day -0.14698 0.00648 -22.7 7.7e-12
##
## Residual standard error: 0.179 on 13 degrees of freedom
## Multiple R-squared: 0.975,Adjusted R-squared: 0.973
## F-statistic: 515 on 1 and 13 DF, p-value: 7.67e-12

The transformed model in this case actually fits worse. The higher value of r2 for the untransformed model
is an indication that the untransformed model explains a larger proportion of the variance in soap weights.
It is left as an exercise for you to examine diagnostic plots of the model residuals in both cases; you should
see that neither one looks markedly better than the other. (There is perhaps an issue with a small amount of
non-independence, or correlation over time, of the residuals; we might expect that with data collected over time.
However, the dataset is so small that it is hard to tell for sure if the problem is real and worth worrying about.)
Figure 8.4 shows a scatterplot with both fits. The data do not support Rex’s assumption that a transformation
is necessary. The scatterplot and especially the residual plots both show that the residuals are mostly positive
near the ends of the data and negative near the center. Part of this is driven by a flattening of the pattern of
data points near the end of the measurement period. Perhaps as the soap became very small, Rex used slightly
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Figure 8.4: Comparing untransformed (darker) and transformed (lighter) fits to soap use data.

less soap than when the soap was larger. Exercise 8.2 asks you to remove the last few observations and see how
that affects the models.

Finally, since a linear model appears to fit at least reasonably well (but see Exercise 8.2), we can give a confidence
interval for β1, the mean amount of soap Rex uses each shower.

confint(soap.model1)

## 2.5 % 97.5 %
## (Intercept) 120.155 126.127
## day -5.806 -5.344

8.8 Nonlinear Least Squares

Another approach to non-linear relationships is called nonlinear least squares or nonlinear regression. In
this approach, instead of attempting to transform the relationship until it becomes linear, we fit a nonlinear
function by minimizing the the sum of the squared residuals relative to that (paramterized) nonlinear function
(form). That is, our model now becomes

y = f(x) + ε

where f may be any parameterized function.

The R function for fitting these models is nls(). This function works much like lm(), but there are some
important differences:

1. Because the model does not have to be linear, we have to use a more verbose description of the model.

2. Numerical optimization is used to fit the model, and the algorithm used needs to be given a reasonable
starting point for its search. Specifying this starting point simultaneously lets R know what the parameters
of the model are. (Each quantity with a starting value is considered a parameter, and the algorithm will
adjust all the parameters looking for the best fit – i.e., the smallest MSE (and hence also the smallest SSE
and RMSE).

Let’s illustrate with an example.

Example 8.8.1. Returning to the ball dropping experiment, let’s fit

time = α0 + α1

√
height (8.1)
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using nonlinear least squares.

nls.model <- nls(time ~ alpha0 + alpha1 * sqrt(height),
data = BallDrop,
start = list(alpha0 = 0, alpha1 = 1))

Notice how the model formula compares with the formula in (8.1). The starting point for the algorithm is
specified with start = list(alpha0 = 0, alpha1 = 1), which also declares the parameters to be fit.

We can obtain the coefficients of the fitted model with

nls.model

## Nonlinear regression model
## model: time ~ alpha0 + alpha1 * sqrt(height)
## data: BallDrop
## alpha0 alpha1
## 0.0161 0.4308
## residual sum-of-squares: 0.000765
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 2.11e-07

or

coef(nls.model)

## alpha0 alpha1
## 0.01608 0.43080

A more complete summary can be obtained by

summary(nls.model)

##
## Formula: time ~ alpha0 + alpha1 * sqrt(height)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## alpha0 0.01608 0.00408 3.94 5e-04
## alpha1 0.43080 0.00486 88.58 <2e-16
##
## Residual standard error: 0.00523 on 28 degrees of freedom
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 2.11e-07

We can restrict our attention to the coefficients table with

coef(summary(nls.model))
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## Estimate Std. Error t value Pr(>|t|)
## alpha0 0.01608 0.004084 3.937 4.976e-04
## alpha1 0.43080 0.004863 88.580 7.732e-36

f <- makeFun(nls.model)
gf_point(time ~ height, data = BallDrop) %>%
gf_fun(f(height) ~ height, color = 'gray40')

gf_point(resid(nls.model) ~ fitted(nls.model))
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We can compare this to the ordinary least squares model by plotting both together on the same plot.

lm.model <- lm(time ~ sqrt(height), data = BallDrop)
g <- makeFun(lm.model)
gf_point(time ~ height, data = BallDrop) %>%
gf_fun(f(height) ~ height, color = 'gray80', size = 1.5) %>%
gf_fun(g(height) ~ height, color = 'red', size = 0.5, linetype = 2)
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In this particular case, there is very little difference between the two models, but this is not always the case.

coef(nls.model)

## alpha0 alpha1
## 0.01608 0.43080

coef(lm.model)
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## (Intercept) sqrt(height)
## 0.01608 0.43080

Example 8.8.2. Here is example where we fit a different model to the BallDrop data, namely

time = α ∗ heightp

power.model <- nls(time ~ alpha * height^power, data = BallDrop,
start = c(alpha = 1, power = .5))

coef(summary(power.model))

## Estimate Std. Error t value Pr(>|t|)
## alpha 0.4472 0.001343 333.09 6.333e-52
## power 0.4797 0.005805 82.63 5.388e-35

A power law can also be fit using lm() by using a log-log transformation.

power.model2 <- lm(log(time) ~ log(height), data = BallDrop)
coef(summary(power.model2))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8076 0.004330 -186.49 7.101e-45
## log(height) 0.4719 0.006425 73.45 1.431e-33

Again, the parameter estimates (and uncertainties) are very similar. Recall that to compare our intercept in
the second model to the α value in the first model, we must untransform:

exp(coef(power.model2)[1])

## (Intercept)
## 0.4459

We can use the delta method to estimate the uncertainty. Since d
dxe

x = ex the uncertainty is approximately

0.446 · 0.004 = 0.002

Example 8.8.3. In addition to comparing estimated parameters and their uncertainties, we should always
look at the residuals of our model. For both the linear regression and the nonlinear least squares models,
the assumption is that the error terms are independent, normally distributed, and have a common standard
deviation. From the plots below we see

1. The nonlinear least squares model is a better match for these assumptions than the linear regression
model.

2. Both models reveal a lack of independence – at a given height, the residuals move up or down as a cluster
as was discussed in the previous section. Neither model is designed to handle this flaw in the design of
the experiment.
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gf_qq( ~ resid(power.model), main = "model 1")
gf_qq( ~ resid(power.model2))
gf_point(resid(power.model) ~ fitted(power.model))
gf_point(resid(power.model2) ~ fitted(power.model2))
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Now let’s take a look at an example where we need the extra flexibilty of the nonlinear least squares approach.

Example 8.8.4. A professor at Macalester College put hot water in a mug and recorded the temperature as
it cooled. Let’s see if we can fit a reasonable model to this data

gf_point(temp ~ time, data = CoolingWater, ylab = "temp (C)", xlab = "time (sec)")
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Our first guess might be some sort of exponential decay
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cooling.model1 <-
nls(temp ~ A * exp( -k * time), data = CoolingWater,

start = list(A = 100, k = 0.1))
f1 <- makeFun(cooling.model1)
gf_point(temp ~ time, data = CoolingWater, xlim = c(-50, 300), ylim = c(0, 110),

ylab = "temp (C)", xlab = "time (sec)") %>%
gf_fun(f1(time) ~ time)
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That doesn’t fit very well, and there is a good reason. The model says that eventually the water will freeze
because

lim
t→∞

Ae−kt = 0

when k > 0. But clearly our water isn’t going to freeze sitting on a lab table. We can fix this by adding in an
offset to account for the ambient temperature:

cooling.model2 <- nls(temp ~ ambient + A * exp(k * (1+time)), data = CoolingWater,
start = list(ambient = 20, A = 80, k = -.1) )

f2 <- makeFun(cooling.model2)
gf_point(temp ~ time, data = CoolingWater, xlim = c(-50, 300), ylim = c(0, 110),

ylab = "temp (C)", xlab = "time (sec)") %>%
gf_fun(f1(time) ~ time, linetype = 2, color = "gray80") %>%
gf_fun(f2(time) ~ time, color = "steelblue")
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This fits much better. Furthermore, this model can be derived from a differential equation

dT

dt
= −k(T0 − Tambient) ,

known as Newton’s Law of Cooling.
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Let’s take a look at the residual plot

gf_point(resid(cooling.model2) ~ time, data = CoolingWater)
plot(cooling.model2, which = 1)
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Hmm. These plots show a clear pattern and very little noise. The fit doesn’t look as good when viewed this way.
It suggests that Newton’s Law of Cooling does not take into account all that is going on here. In particular,
there is a considerable amount of evaporation (at least at the beginning when the water is warmer). More
complicated models that take this into account can fit even better. For a discussion of a model that includes
evaporation, see http://stanwagon.com/public/EvaporationPortmannWagonMiER.pdf.1

8.8.1 Choosing Between Linear and Non-linear Models

So how do we choose between linear and non-linear models? Let’s enumerate some of the differences between
them:

1. Some models cannot be expressed as linear models, even after transformations.
In this case we only have one option, the non-linear model.

2. Linear models can be fit quickly and accurately without numerical optimization algorithms because they
satisfy nice linear algebra properties.
The use of numerical optimizers in non-linear least squares models makes them subject to potential
problems with the optimizers. They may not converge, may converge to the wrong thing, or convergence
may depend on choosing an appropriate starting point for the search.

3. The two types of models make different assumptions about the error terms.
In particular, when we apply transformations to achieve a linear model, those transformations often affect
the distribution of the error terms as well. For example, if we apply a log-log transformation to fit a power
law, then the model is

log(y) = β0 + β1 log(x) + ε

y = eβ0xβ1eε

y = αxβ1eε

So the errors are multiplicative rather than additive and they have a normal distribution after applying
the logarithmic transformation. This implies that the relative errors should be about the same magnitude
rather than the absolute errors.

1The model with evaporation adds another complication in that the resulting differential equation cannot be solved algebraically,
so there is no algebraic formula to fit with nls(). But the method of least squares can still be used by creating a parameterized
numerical function that computes the sum of squares and using a numerical minimizer to find the optimal parameter values. Since
the use of numerical differential equation solvers is a bit beyond the scope of this course, we’ll leave that discussion for another day.
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This is potentially very different from the nonlinear model where the errors are additive:

y = αxβ + ε

Plots of residuals vs. fits and qq-plots for residuals can help us diagnose whether the assumptions of a
model are reasonable for a particular data set.

4. Linear models provide an easy way to produce confidence intervals for a mean response or an individual
response.

The models fit using nls() do not have this capability.
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8.9 Exercises

8.1 In Example 8.7.4, we applied a square root transformation to the height. Is there another transformation
that yields an even better fit?

8.2 Remove the last few days from the Soap data set and refit the models in Example 8.7.6. How much do
things change? Do the residuals look better, or is there still some cause for concern?

8.3 For each of the following relationships between a response y and an explanatory variable x, if possible find
a pair of transformations f and g so that g(y) is a linear function of f(x):

g(y) = β0 + β1f(x) .

For example, if y = aebx, then log(y) = log(a) + bx, so g(y) = log(y), f(x) = x, β0 = log(a), and β1 = b.

a) y = abx.

b) y = axb.

c) y = 1
a+bx .

d) y = x
a+bx .

e) y = ax2 + bx+ c.

f) y =
1

1 + ea+bx
.

g) y =
100

1 + ea+bx
.

8.4 What happens to the role of the error terms (ε) when we transform the data? For each transformation
from Exercise 8.3, start with the form

g(y) = β0 + β1f(x) + ε

and transform back into a form involving the untransformed y and x to see how the error terms are involved in
these transformed linear regression models.

It is important to remember that when we fit a linear model to transformed data, the usual assumptions of the
model are that the errors in the (transformed) linear form are additive and normally distributed. The errors
may appear differently in the untransformed relationship.

8.5 The transformations in the ladder of re-expression also affects the shape of a distribution.

a) If a distribution is symmetric, how does the shape change as we move up the ladder?

b) If a distribution is symmetric, how does the shape change as we move down the ladder?

c) If a distribution is left skewed, in what direction should we move to make the distribution more symmetric?

d) If a distribution is right skewed, in what direction should we move to make the distribution more sym-
metric?

8.6 By attaching a heavy object to the end of a string, it is easy to construct pendulums of different lengths.
Some physics students did this to see how the period (time in seconds until a pendulum returns to the same
location) depends on the length (in meters) of the pendulum. The students constructed pendulums of lengths
varying from 10 cm to 16 m and recorded the period length (averaged over several swings of the pendulum).
The resulting data are in the Pendulum data set in the fastR2 package.
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a) Fit a power law to this data using a transformation and a linear model. How well does the power law fit?
What is the estimated power in the power law based on this model?

b) Fit a power law to this data using a nonlinear model. How well does the power law fit? What is the
estimated power in the power law based on this model?

c) Compare residual plots and normal-quantile plots for the residuals for the two models. How do the models
compare in this regard?

8.7 The Pressure data set contains data on the relation between temperature in degrees Celsius and vapor
pressure in millimeters (of mercury). With temperature as the predictor and pressure as the response, use
transformations or nonlinear models as needed to obtain a good fit. Make a list of all the models you considered
and explain how you chose your best model. What does your model say about the relationship between pressure
and temperature?

8.8 The cornnit data set in the package faraway contains data from a study investigating the relationship
between corn yield (bushels per acre) and nitrogen (pounds per acre) fertilizer application in Wisconsin. Using
nitrogen as the predictor and corn yield as the response, use transformations (if necessary) to obtain a good fit.
Make a list of all the models you considered and explain how you chose your best model.

8.9 The data set ACTgpa (in the fastR2 package) contains the ACT composite scores and GPAs of some
randomly selected seniors at a Midwest liberal arts college.

a) Give a 95% confidence interval for the mean ACT score of seniors at this school.

b) Give a 95% confidence interval for the mean GPA of seniors at this school.

c) Use the data to estimate with 95% confidence the average GPA for all students who score 25 on the ACT.

d) Suppose you know a high school student who scored 30 on the ACT. Estimate with 95% confidence his
GPA as a senior in college.

e) Are there any reasons to be concerned about the analyses you have just done? Explain.

8.10 In the absence of air resistance, a dropped object will continue to accelerate as it falls. But if there is air
resistance, the situation is different. The drag force due to air resistance depends on the velocity of an object
and operates in the opposite direction of motion. Thus as the object’s velocity increases, so does the drag force
until it eventually equals the force due to gravity. At this point the net force is 0 and the object ceases to
accelerate, remaining at a constant velocity called the terminal velocity.

Now consider the following experiment to determine how terminal velocity depends on the mass (and therefore
on the downward force of gravity) of the falling object. A helium balloon is rigged with a small basket and just
the right ballast to make it neutrally buoyant. Mass is then added and the terminal velocity is calculated by
measuring the time it takes to fall between two sensors once terminal velocity has been reached.

The Drag data set (in the fastR2 package) contains the results of such an experiment conducted by some
undergraduate physics students. Mass is measured in grams and velocity in meters per second. (The distance
between the two sensors used for determining terminal velocity is given in the height variable.)

By fitting models to this data, determine which of the following “drag laws” matches the data best:
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• Drag is proportional to velocity.

• Drag is proportional to the square of velocity.

• Drag is proportional to the square root of velocity.

• Drag is proportional to the logarithm of velocity.

8.11 Construct a plot that reveals a likely systematic problem with the Drag (see Exercise 8.10) data set.
Speculate about a potential cause for this.

8.12 Exercise 8.11 suggests that some of the data should be removed before analyzing the Drag data set. Redo
Exercise 8.10 after removing this data.

8.13 The Spheres data set (in the fastR2 package) contains measurements of the diameter (in meters) and
mass (in kilograms) of a set of steel ball bearings. We would expect the mass to be proportional to the cube of
the diameter. Fit a model and see if the data reflect this.

8.14 The Spheres data set (in the fastR2 package) contains measurements of the diameter (in meters) and
mass (in kilograms) of a set of steel ball bearings. We would expect the mass to be proportional to the cube of
the diameter. Using appropriate transformations fit two models: one that predicts mass from diameter and one
that predicts diameter from mass. How do the two models compare?

8.15 The Utilities data set has information from utilities bills at a Minnesota residence. Fit a linear model
that predicts thermsPerDay from temp.

a) What observations should you remove from the data before doing the analysis? Why?

b) Are any transformations needed?

c) How happy are you with the fit of your model? Are there any reasons for concern?

d) Interpret your final model (even if it is with some reservations listed in part c)). What does it say about
the relationship between average monthly temperature and the amount of gas used at this residence?
What do the parameters represent?
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9
Hypothesis Testing

This chapter is concerned with statistical hypothesis testing, and how we can use it to make inferences and draw
conclusions from data about questions of scientific interest.

9.1 Experimental Design in Statistics

Before we begin to talk about hypothesis testing, let’s review the general process of designing and carrying out
a statistical experiment.

1. Determine the question of interest.

Just what is it we want to know? It may take some effort to make a vague idea precise. The precise
questions may not exactly correspond to our vague questions, and the very exercise of stating the question
precisely may modify our question. Sometimes we cannot come up with any way to answer the question
we really want to answer, so we have to live with some other question that is not exactly what we wanted
but is something we can study and will (we hope) give us some information about our original question.

2. Determine the population.

Just who or what do we want to know about? For example, are we only interested in one specific person,
or women in general, or all women, or all people? Or, are we interested in the energy efficiency of one
particular device, or all the machines in a certain factory, or all machines of a certain type, or all machines
of a certain class, or all factories in a certain industry?

3. Select measurements.

We are going to need some data. We get our data by making some measurements. These might be physical
measurements with some device (like a ruler or a scale). But there are other sorts of measurements too,
like the answer to a question on a form. Sometimes it is tricky to figure out just what to measure. (How
do we measure happiness or intelligence, for example?) Just how we do our measuring will have important
consequences for the subsequent statistical analysis. The recorded values of these measurements are called
variables (because the values vary from one individual to another).

4. Determine the sample.

Usually we cannot measure every individual in our population; we have to select some to measure. But
how many and which ones? These are important questions that must be answered. Generally speaking,
bigger is better, but it is also more expensive. Moreover, no size is large enough if the sample is selected
inappropriately.
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For example, if we wanted to draw conclusions about energy use across a whole industry, we would have
to be careful not to sample from just a single factory, or a single type of manufacturing device. If we
wanted to draw conclusions about all people, we would have to be careful not to study only male college
students. The sample should be a random selection from the whole population (or as close as we can get
to that standard).

5. Make and record the measurements.

Once we have the design figured out, we have to do the legwork of data collection. This can be a time-
consuming and tedious process. A study of public opinion may require many thousands of phone calls or
personal interviews. In a laboratory setting, each measurement might be the result of a carefully performed
laboratory experiment.

6. Organize the data.

Once the data have been collected, it is often necessary or useful to organize them. Data are typically
stored in spreadsheets or in other formats that are convenient for processing with statistical packages.
Very large data sets are often stored in databases.

Part of the organization of the data may involve producing graphical and numerical summaries of the
data. These summaries may give us initial insights into our questions or help us detect errors that may
have occurred to this point.

7. Draw conclusions from data.

Once the data have been collected, organized, and analyzed, we need to reach a conclusion. What is the
answer to our scientific question? Is our idea or hypothesis about the way things work incorrect, or do
the data support it? How sure are we about these conclusions?

8. Produce a report.

Typically the results of a statistical study are reported in some manner. This may be as a refereed article
in an academic journal, as an internal report to a company, or as a solution to a problem on a homework
assignment. These reports may themselves be further distilled into press releases, newspaper articles,
advertisements, and the like. The mark of a good report is that it provides the essential information
about each of the steps of the study.

At this point, you may be wondering who the innovative scientist was and what the results of the experiment
were. The scientist was R. A. Fisher, who first described this situation as a pedagogical example in his 1925 book
on statistical methodology [Fis25]. Fisher developed statistical methods that are among the most important
and widely used methods to this day, and most of his applications were biological.

9.2 Coins and Cups

You might also be curious about how the experiment came out. How many cups of tea were prepared? How
many did the woman correctly identify? What was the conclusion?

Fisher never says. In his book he is interested in the method, not the particular results. But let’s suppose we
decide to test the lady with ten cups of tea. We’ll flip a coin to decide which way to prepare the cups. If we
flip a head, we will pour the milk in first; if tails, we put the tea in first. Then we present the ten cups to the
lady and have her state which ones she thinks were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of 10, or whatever it happens to be). It is trickier to figure
out what to do with her score. Even if she is just guessing and has no idea, she could get lucky and get quite a
few correct – maybe even all 10. But how likely is that?

Let’s try an experiment. I’ll flip 10 coins. You guess which are heads and which are tails, and we’ll see how you
do.
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...

Comparing with your classmates, we will undoubtedly see that some of you did better and others worse.

Now let’s suppose the lady gets 9 out of 10 correct. That’s not perfect, but it is better than we would expect
for someone who was just guessing. On the other hand, it is not impossible to get 9 out of 10 just by guessing.
So here is Fisher’s great idea: Let’s figure out how hard it is to get 9 out of 10 by guessing. If it’s not so hard
to do, then perhaps that’s just what happened, so we won’t be too impressed with the lady’s tea tasting ability.
On the other hand, if it is really unusual to get 9 out of 10 correct by guessing, then we will have some evidence
that she must be able to tell something.

But how do we figure out how unusual it is to get 9 out of 10 just by guessing? We’ll learn another method
later, but for now, let’s just flip a bunch of coins and keep track. If the lady is just guessing, she might as well
be flipping a coin.

So here’s the plan. We’ll flip 10 coins. We’ll call the heads correct guesses and the tails incorrect guesses.
Then we’ll flip 10 more coins, and 10 more, and 10 more, and . . . . That would get pretty tedious. Fortunately,
computers are good at tedious things, so we’ll let the computer do the flipping for us using a tool in the mosaic
package. The rflip() function can flip one coin

library(mosaic)
rflip()

##
## Flipping 1 coin [ Prob(Heads) = 0.5 ] ...
##
## T
##
## Number of Heads: 0 [Proportion Heads: 0]

or a number of coins

rflip(10)

##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T T H H T T H H H H
##
## Number of Heads: 6 [Proportion Heads: 0.6]

and show us the results.

Typing rflip(10) a bunch of times is almost as tedious as flipping all those coins. But it is not too hard to
tell R to do() this a bunch of times.

do(2) * rflip(10)

## n heads tails prop
## 1 10 6 4 0.6
## 2 10 4 6 0.4

Let’s get R to do() it for us 10,000 times and make a table and a histogram of the results.
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RandomLadies <- do(10000) * rflip(10)
histogram( ~ heads, data = RandomLadies, width = 1)
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tally( ~ heads, data = RandomLadies)

## heads
## 0 1 2 3 4 5 6 7 8 9 10
## 5 102 467 1203 2048 2470 2035 1140 415 108 7

tally( ~ heads, data = RandomLadies, format = 'percent')

## heads
## 0 1 2 3 4 5 6 7 8 9 10
## 0.05 1.02 4.67 12.03 20.48 24.70 20.35 11.40 4.15 1.08 0.07

tally( ~ heads, data = RandomLadies, format = 'proportion')

## heads
## 0 1 2 3 4 5 6 7 8 9 10
## 0.0005 0.0102 0.0467 0.1203 0.2048 0.2470 0.2035 0.1140 0.0415 0.0108 0.0007

You might be surprised to see that the number of correct guesses is exactly 5 (half of the 10 tries) only 25% of
the time. But most of the results are quite close to 5 correct. 67% of the results are 4, 5, or 6, for example.
And 90% of the results are between 3 and 7 (inclusive). But getting 8 correct is a bit unusual, and getting 9 or
10 correct is even more unusual.

So what do we conclude? It is possible that the lady could get 9 or 10 correct just by guessing, but it is not
very likely (it only happened in about 1.2% of our simulations). So one of two things must be true:

• The lady got unusually “lucky", or

• The lady is not just guessing.

Although Fisher did not say how the experiment came out, others have reported that the lady correctly identified
all 10 cups! [?]

This same reasoning can be applied to answer a wide range of questions that have a similar form. For example,
the question of whether dogs can smell cancer could be answered essentially the same way (although it would
be a bit more involved than preparing tea and presenting cups to the Lady).
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9.3 A General Framework

In statistical hypothesis testing, we can follow the following general procedure. We usually begin with some idea
about how the process we are studying should work. For example, we might have a hunch that highway bridges
with higher traffic flows are in poorer condition, and therefore merit more frequent repairs. For statistical
hypothesis testing, we must translate that “hunch" into a testable null hypothesis, often called H0: one
that can be demonstrated to be very unlikely in light of our data. In the case of the bridges, a testable null
hypothesis might be that bridge condition does not depend on traffic flow. Then, if our data shows a strong
apparent relationship between condition and traffic, we have evidence to reject the null hypothesis, and the data
support the idea that there is some relationship between condition and traffic.

Null hypothesis are usually “boring," no-result hypotheses: there is no pattern; there is no relationship between
the variables of interest; there is no difference between the two samples of interest. If we can reject the null
hypothesis in a certain case, we have some evidence – but NOT proof – that there is an interesting pattern in
our data, and thus in the population we are trying to draw conclusions about.

The alternative to the null hypothesis is called the alternative hypothesis, often called H1. The alternative
hypothesis, stated most generally, is usually some form of “the null hypothesis is not true" – so there IS a
pattern in the data, or a difference between the samples, etc.

hypothesis A statement that can be true or false.

statistical hypothesis A hypothesis about a parameter or parameters.

In our bridge example, a statistical null hypothesis H0 might be: the true slope of the regression of condition
as a function of traffic is 0.

Examples 9.3.1. The following are examples of null hypotheses.

1. H0 : µ = 0. (The population mean is 0.)

2. H0 : β1 = 0. (The “true” slope is 0 – assuming a model like E(Y ) = β0 + β1x.)

3. H0 : β1 = β2 (Two parameters in the model are equal.)

4. H0 : β2 = β3 = 0 (Two parameters in the model are both equal to 0.)

9.3.1 The Four Step Process

Hypothesis testing generally follows a four-step process.

1. State the null (H0) and alternative (H1) hypotheses.

The null hypothesis is on trial and innocent until proven guilty. We will render one of two verdicts: Reject
the null hypothesis (guilty) or do not reject the null hypothesis (not guilty). Important! We can never
accept or prove either hypothesis – only reject the null as unlikely, or fail to reject the null since it seems
likely.

2. Compute a test statistic.

For a statistical hypothesis test, all the evidence against the null hypothesis must be summarized in a
single number called the test statistic. It is a statistic because it is a number computed from the data. It
is called a test statistic because we are using it to do hypothesis testing.
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3. Determine the p-value.

The p-value is a probability: Assuming the null hypothesis is true, how likely are we to get at least as much
evidence against it as we have in our data (i.e., a test statistic at least as unusual as the one observed)
just by random chance?

4. Interpret the results.

If the p-value is small, then one of two things is true:

(a) The null hypothesis is true and something very unlikely occurred in our sample, or
(b) The null hypothesis is false, so it is unsurprising that our observed data yield statistics that seem

unlikely based on that (incorrect, untrue) hypothesis.

For this reason we consider small p-values to provide evidence against the null hypothesis.

9.3.2 The Lady Tasting Tea, Revisted

Example 9.3.2. For the lady tasting tea, this process looks like

1. H0: The probability of being correct is 0.5 (she’s just guessing).

Ha The probability of being correct is larger than 0.5 (she can do better than someone who just guesses).

2. Test statistic: x = 9 (of n = 10) were correct.

3. P-value

(a) Based on our empirical method, we estimate a p-value of

prop( ~ (heads >= 9), data = RandomLadies)

## prop_TRUE
## 0.0115

(b) The probabilities for the number of correct guesses can be worked out theoretically as well. The
resulting distribution is called a binomial distribution. As with other distributions we have seen, R
includes the functions dbinom(), pbinom(), qbinom(), and rbinom().

gf_dist("binom", size = 10, prob = 0.5) # size = # of flips; prob = probability of heads
dbinom(9, 10, .5) + dbinom(10, 10, .5)

## [1] 0.01074

1 - pbinom(8, 10, .5) # Note: P(X >=9) = 1 - P(X <=8)

## [1] 0.01074
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4. Interpret the p-value.
How small is “small", and how small does a p-value have to be before we reject the null hypothesis? Often,
a significance level (usually called α) of 0.05 is used. Sometimes α = 0.01 is used instead. Basically,
this corresponds to a 5% chance of seeing results as extreme as those found in our data, were the null
hypothesis really true. If we want to be more conservative about our judgement (not rejecting the null
hypothesis unless the evidence in the data is stronger against it), we could use a smaller α value.
It is also common for researchers to simply report the p-values they obtain from their analysis, allowing
readers to draw conclusions on their own.

Example 9.3.3. This situation is so common that there is a function to do the calculations for us. We just
need to provide the values of x and n:

binom.test(x = 9, n = 10) # default test is 2-sided

##
##
##
## data: 9 out of 10
## number of successes = 9, number of trials = 10, p-value = 0.02
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.5550 0.9975
## sample estimates:
## probability of success
## 0.9

The output above doesn’t match what we obtained in Example 9.3.2 because the alternative hypothesis is
different. It accepts both low number of correct identifications (0 or 1) and high numbers (9 or 10) as evidence
against the null hypothesis. If we want a one-sided p-value, we just need to ask:

binom.test(x = 9, n = 10, alternative = "greater")

##
##
##
## data: 9 out of 10
## number of successes = 9, number of trials = 10, p-value = 0.01
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.6058 1.0000
## sample estimates:
## probability of success
## 0.9

Approximate p-value Translation

> 0.10 No convincing evidence against the null hypothesis

0.05− 0.10 Weak evidence against the null hypothesis

0.01− 0.05 Some evidence against the null hypothesis

< 0.01 Strong evidence against the null hypothesis

< 0.001 Very strong evidence against the null hypothesis
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9.4 Statistical Significance

The word “significant" has a special meaning in statistics. If we say that a difference or relationship between
variables is significant, that means that we have applied a hypothesis test, and have failed to reject the null hy-
pothesis – in other words, we have data that provides some evidence against the null hypothesis, and supporting
the alternative.

So, a pattern strong enough cause us to reject a null hypothesis of “no difference" or “no pattern" or “no
relationship" is called a statistically significant difference, pattern, or relationship. Differences or relationships
may fail to be statistically significant if they are small or weak, if they are masked by underlying variability, or if
there is too little data. Good studies will collect enough data and work to reduce variability (if that is possible)
in order to have a reasonable expectation of detecting differences if they are large enough to be scientifically
interesting.

9.5 T-tests

Many hypothesis tests are conducted based on a t-distribution, and so they are called “t-tests". This is because,
according to the Central Limit Theorem, the sampling distributions of most of our statistics (parameter estimates
calculated from data) follow Normal distributions. But just as we did when computing confidence intervals,
we’ll always have to use the t-distribution rather than the normal distribution, since we don’t know σ (the true
population standard deviation), and since our sample size is finite. These t-tests all use a similar sort of test
statistic:

t =
estimate− hypothesized value

standard error

The numerator tells us that the more the estimate and the hypothesized value differ, the stronger the evidence.
The denominator tells us that differences mean more when the standard deviation is small than when the
standard deviation is large.

The test statistic is converted to a p-value by comparing it to the t-distribution with appropriate degrees of
freedom. For linear models, this is the degrees of freedom associated with the residual standard error. If
considering some statistic (say, the mean value) for a single variable, the degrees of freedom will be n-1, where
n is the sample size.

9.5.1 The 1-sample t-test

The 1-sample t-test tests the null hypothesis

• H0 : µ = µ0, vs.

• Ha : µ 6= 0.

That is, it tests whether there is evidence that the mean of some population (µ) is different from some hypoth-
esized value (µ0) – often µ0 = 0.

Example 9.5.1. Let’s look at some data on weight loss programs. In this data set, there were two groups.
One group received a monetary incentive if they lost weight while following a weight loss program. The controls
did not receive a monetary incentive, but followed the same program otherwise. Our null hypothesis is that
the control participants would not lose weight – that the true weight loss without incentives would average 0
pounds. Let’s see whether on average the controls lost weight:
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library(Stat2Data)
data(WeightLossIncentive)
Controls <- WeightLossIncentive %>% filter(Group == "Control")
df_stats( ~ WeightLoss, data = Controls )

## response min Q1 median Q3 max mean sd n missing
## 1 WeightLoss -17 -2 3 11.25 20 3.921 9.108 19 0

gf_boxplot( ~ WeightLoss, data = Controls)
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The standard error when doing inference for a mean is

SE =
s√
n

=
9.108√

19
= 2.089

SE <- 9.108 / sqrt(19); SE

## [1] 2.09

If we want to test our null hypothesis, then we compute a t-statistic:

t <- (3.92 - 0) / SE; t

## [1] 1.876

and from this a p-value, which is the tails probability for a t-distribution with 18 degrees of freedom. In other
words, the p-value gives the probability of getting a test statistic at least as big as the one we really got,
assuming that the test statistic follows a t-distribution with n− 1 degrees of freedom.

First, we find the probability of observing a test statistic of t = 1.876 or larger. Then, we have to double this
value – it would be at least as unlikely to see a test statistic of −1.876 or smaller. Our p-value should give the
area under the t-distribution curve for x-values smaller than −1.876 and larger than 1.876; it’s the shaded area
in the figure below:
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1 - pt( t, df = 19-1 )

## [1] 0.03848

2 * ( 1 - pt( t, df = 19-1 ) )

## [1] 0.07696

Our p-value is 0.077 (1 or 2 significant digits are sufficient for reporting p-values). This is not compelling
evidence that the weight loss program (without incentives) actually leads to a change in weight. A change this
large could occur just by chance in nearly 8% of samples.

Example 9.5.2. In R, there is also a function to automate this t-test:

t.test( ~ WeightLoss, data = Controls)

##
## One Sample t-test
##
## data: WeightLoss
## t = 1.9, df = 18, p-value = 0.08
## alternative hypothesis: true mean is not equal to 0
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## 95 percent confidence interval:
## -0.4688 8.3109
## sample estimates:
## mean of x
## 3.921

If we don’t want so much out put, we can ask R to report only the p-value:

pval(t.test( ~ WeightLoss, data = Controls))

## p.value
## 0.07688

By default, t.test() uses a significance level α = 0.05. If we want to specify a different α, we can use the input
conf.level as follows:

t.test( ~ WeightLoss, data = Controls, conf.level = 0.01)

##
## One Sample t-test
##
## data: WeightLoss
## t = 1.9, df = 18, p-value = 0.08
## alternative hypothesis: true mean is not equal to 0
## 1 percent confidence interval:
## 3.894 3.948
## sample estimates:
## mean of x
## 3.921

9.5.2 The paired 2-sample t-test

Sometimes, a dataset contains paired observations. These might be, for example, two measurements on the
same experimental subject before and after some experimental treatment; measurements on the same subject at
two times, or in two different situations; (or others). In this case, we can not consider the measurements within
a pair to be independent of each other. But what we are really interested in is the magnitude of the difference
between the 2 observations in each pair. So this “paired t-test" problem reduces to a one-sample t-test, where
the test statistic is constructed using the differences D between the 2 measurements in each pair:

t =
observed average difference− hypothesized average difference

standard error

Let’s consider an example. Example 9.5.3. The following table provides the corneal thickness in microns of
both eyes of patients who have glaucoma in one eye:

Healthy 484 478 492 444 436 398 464 476

Glaucoma 488 478 480 426 440 410 458 460

Difference 4 0 -12 -18 4 12 -6 -16
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The corneal thickness is likely to be similar in the two eyes of any single patient, so that the two observations
on the same patient cannot be assumed to be independent. But maybe (after accounting for differences between
people), there is some difference in corneal thickness that has to do with the presence or absence of glaucoma.
First, we can have a look at the data:

Glaucoma <- tibble(
subject = 1:8,
glaucoma = c(488, 478, 480, 426, 440, 410, 458, 460),
healthy = c(484, 478, 492, 444, 436, 398, 464, 476),
diff = glaucoma - healthy

)

gf_point(glaucoma ~ subject, data = Glaucoma,
color = ~"glaucoma", shape = ~"glaucoma", size = 3, alpha = 0.9) %>%

gf_point(healthy ~ subject, data = Glaucoma,
color = ~"healthy", shape = ~"healthy", size = 3, alpha = 0.6)
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It looks like healthy corneas are often thicker. To try to quantify this, we consider the difference between each
pair of observations, denoted by di. We wish to test,

H0 : µ = 0 vs H1 : µ 6= 0.

Under H0,

T =
D̄

S/
√
n
∼ tn−1.

In R, we can compute D (the average of di) and its standard error to obtain the test statistic t and the
corresponding p-value:

n <- nrow(Glaucoma); n

## [1] 8

df_stats(~ diff, data = Glaucoma, mean, sd)

## response mean sd
## 1 diff -4 10.74
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meanD <- mean( ~ diff, data = Glaucoma); meanD

## [1] -4

SE <- sd( ~ diff, data = Glaucoma) / sqrt(n); SE

## [1] 3.798

t <- (meanD - 0) / SE; t

## [1] -1.053

pval <- 2 * pt(t, df=n-1); pval

## [1] 0.3273

Note that we used 2 * pt(...) because our test statistic t was negative. If it had been positive, we would have
used 2 * (1-pt(...)) instead. The illustration below may help make this clearer – the p-value we are computing
corresponds to the shaded areas in the plot.
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We can also let R make all the computations for us. Notice that we use the differences between pairs as the
input data, rather than the raw data itself.

df_stats(WeightLoss ~ Group, data = WeightLossIncentive)

## response Group min Q1 median Q3 max mean sd n missing
## 1 WeightLoss Control -17.0 -2.0 3 11.25 20 3.921 9.108 19 0
## 2 WeightLoss Incentive -0.5 7.5 18 24.00 30 15.676 9.414 17 2

model2 <- lm(WeightLoss ~ Group, data = WeightLossIncentive)
coef(summary(model2))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.921 2.123 1.847 0.0734506
## GroupIncentive 11.755 3.089 3.805 0.0005635

9.5.3 The (unpaired) 2-sample t-test

In some cases, our research sample may contain data from 2 different categories of observational units. For
example, in the weight loss data, there were the control participants we considered above; there were also
a number of incentivized participants, who received money if they lost weight. We might be interested in
considering whether the incentive made a difference. Before we begin, we can plot the data:

gf_boxplot(WeightLoss ~ Group, data = WeightLossIncentive)

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
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It looks like the incentive group lost more weight. But how can we judge whether the difference between groups
is really an effect of the incentive, and not just random variation?

In this case, the null hypothesis H0 would be that the average weight loss by control participants (µc) was the
same as the average weight loss by incentivized participants (µi) – H0 : µc = µi. The alternative hypothesis
would be H1 : µc 6= µi – there was a difference between the two groups.

But in this case – with data from 2 different categories – how can we compute the appropriate standard error
and test statistic for a t-test? We have to consider the fact that there may be different numbers of data points
in the 2 categories. Let n be the sample size within the first category X (control participants in the example),

Last Modified: January 23, 2021 Stat 241 : Pruim



9. Hypothesis Testing 219

and m be the sample size in the other category Y (incentive participants in the example). How can we compute
a standard error for a difference in means between the two groups?

In this case, if we assume that the sample variaces are equal between the two categories, then we can define the
pooled sample variance sp:

s2
p =

(n− 1)s2
X + (m− 1)s2

Y

(m+ n− 2)

Here, sY and sX are the sample standard deviations within each category. We will not provide proof here, but
it is known that in this case, the test statistic is:

T =
X̄ − Ȳ

Sp

√
1
m + 1

n

∼ tm+n−2.

As written in the equation above, this test statistic follows a t-distribution with m+ n− 2 degrees of freedom.
We could carry out a two-sample t-test by hand using the test statistic defined above, or we can use the function
t.test() and R will do the computations for us. For the weight loss example:

head(WeightLossIncentive, 4)

## WeightLoss Group Month7Loss
## 1 12.5 Control -2.0
## 2 12.0 Control 7.0
## 3 1.0 Control 19.5
## 4 -5.0 Control -0.5

t.test( ~ WeightLoss, groups = Group, data = WeightLossIncentive,
var.equal = TRUE)

##
## Two Sample t-test
##
## data: WeightLoss by Group
## t = -3.8, df = 34, p-value = 6e-04
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.033 -5.478
## sample estimates:
## mean in group Control mean in group Incentive
## 3.921 15.676

Note the “var.equal=TRUE" input argument. With this input, R will carry out the t-test assuming equal
variance between the two categories. If we want to avoid making this assumption, there is a modified version
of the two-sample t-test called the Welch two-sample t-test, which does not assume equal variances. If we omit
the “var.equal" input, or set it to “var.equal=FALSE", then R will do a Welch two-sample t-test for us. (We
will not cover in this course how to do a Welch test by hand).

We might be able to judge informally whether the equal-variance assumption is valid by looking at the distribu-
tions of our variable of interest grouped by category, and computing the sample standard deviations by groups:
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densityplot(~ WeightLoss, groups = Group, data = WeightLossIncentive)
sd( ~ WeightLoss | Group, data = WeightLossIncentive, na.rm = TRUE)

## Control Incentive
## 9.108 9.414
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We don’t have an obvious indication of unequal variances. (This assumption can also be tested statistically,
although we won’t learn how in this class, and it’s generally not recommended to do such a test prior to running
a t-test). If we wanted to do the t-test without the equal variance assumption, in R, we would use:

t.test( ~ WeightLoss, groups = Group, data = WeightLossIncentive)

##
## Welch Two Sample t-test
##
## data: WeightLoss by Group
## t = -3.8, df = 33, p-value = 6e-04
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.050 -5.461
## sample estimates:
## mean in group Control mean in group Incentive
## 3.921 15.676

In practice, there is no real disadvantage to simply using Welch’s test all the time. So in general, if you are
doing a 2-sample unpaired test, you should always use var.equal=FALSE (or omit the input var.equal, and it
will default to FALSE).

9.5.4 Testing Model Coefficients

We can also use t-tests to test the null hypothesis that there is no relationship between the predictor and
explanatory variables in a regression model. If we can’t reject that hypothesis, then we have evidence that there
is really some relationship, and that the response can be predicted based upon the explanatory variable.

Example 9.5.4. Suppose you suspect that drag force should be proportional to the square of velocity. Let’s
see if that is consistent with the data collected by some physics students. In this experiment, the students
rigged up neutrally buoyant balloon and then loaded it with different amounts of weight and dropped it until
and recorded its terminal velocity. At that point the force due to gravity (determined by the mass loaded to
the balloon) is equal to the drag force (because there is no acceleration).
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We’ll fit a power law model
force.drag = A · velocitya

and test the hypothesis that a = 2. We can fit this model using a log-log transformation:

log(force.drag) = log(A) + a log(velocity)

So a = β1 in our usual linear model notation.

drag.model <- lm(log(force.drag) ~ log(velocity), data = Drag)
gf_point(log(force.drag) ~ log(velocity), data = Drag)
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The fit is not perfect, and in fact suggests a systematic problem with the way these data were collected:1

gf_point(resid(drag.model) ~ fitted(drag.model))
gf_qq( ~ resid(drag.model))

−0.25

0.00

0.25

0.50

1 2 3 4 5
fitted(drag.model)

re
si

d(
dr

ag
.m

od
el

)

−0.25

0.00

0.25

0.50

−2 −1 0 1 2
theoretical

sa
m

pl
e

summary(drag.model)

##
## Call:
## lm(formula = log(force.drag) ~ log(velocity), data = Drag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3416 -0.1497 -0.0467 0.0666 0.6615

1There is some evidence in this data that some of the observations did not reach critical velocity. It would be good to refit this
data with those observations removed from the data. See Exercise 9.3.
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4737 0.0442 55.9 <2e-16
## log(velocity) 2.0515 0.0537 38.2 <2e-16
##
## Residual standard error: 0.245 on 40 degrees of freedom
## Multiple R-squared: 0.973,Adjusted R-squared: 0.973
## F-statistic: 1.46e+03 on 1 and 40 DF, p-value: <2e-16

None of the p-values produced in this output is what we want. They are testing the hypotheses that β0 = and
that β1 = 0. β1 = 0. But we can easily calculate the p-value we want since we have the standard error and
degrees of freedom.

beta1.hat <- 2.051
SE <- 0.05366
t <- ( beta1.hat - 2 ) / SE; t

## [1] 0.9504

2 * pt( - abs(t), df= 40 )

## [1] 0.3476

With this large a p-value, we cannot reject the null hypothesis that p = 2. A large p-value does not prove
that p = 2, but it does say that our data are consistent with that value. Of course, our data may be
consistent with many other values of p as well.

Example 9.5.5. We could also do the previous example using a nonlinear model

drag.model2 <- nls(force.drag ~ A * velocity^p, data = Drag, start = list(A = 1,p = 2))
summary(drag.model2)

##
## Formula: force.drag ~ A * velocity^p
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## A 12.9053 1.6136 8.0 8e-10
## p 1.9299 0.0944 20.4 <2e-16
##
## Residual standard error: 12.5 on 40 degrees of freedom
##
## Number of iterations to convergence: 6
## Achieved convergence tolerance: 3.74e-06

Again, the p-values listed are not of interest (they are testing the hypotheses that each coefficient is 0). But we
can compute the p-value of interest as follows:

t <- (2 - 1.92989) / 0.0944; t

## [1] 0.7427
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2 * pt( - abs(t), df = 40)

## [1] 0.462

Although the two p-values are different, the conclusion is the same using either model: Our data are consistent
with the hypothesis that p = 2.

Example 9.5.6.

data(PorschePrice, package = "Stat2Data")
head(PorschePrice)

## Price Age Mileage
## 1 69.4 3 21.5
## 2 56.9 3 43.0
## 3 49.9 2 19.9
## 4 47.4 4 36.0
## 5 42.9 4 44.0
## 6 36.9 6 49.8

porsche.model <- lm(Price ~ Mileage, data = PorschePrice)
summary(porsche.model)

##
## Call:
## lm(formula = Price ~ Mileage, data = PorschePrice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.308 -4.047 -0.395 3.837 12.676
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.0905 2.3699 30.0 <2e-16
## Mileage -0.5894 0.0566 -10.4 4e-11
##
## Residual standard error: 7.17 on 28 degrees of freedom
## Multiple R-squared: 0.795,Adjusted R-squared: 0.787
## F-statistic: 108 on 1 and 28 DF, p-value: 3.98e-11

gf_point( resid(porsche.model) ~ fitted(porsche.model)) %>% gf_smooth()

## ‘geom_smooth()‘ using method = ’loess’

gf_qq( ~ resid(porsche.model) )
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The model looks reasonable. What are the two hypotheses being tested?

1. H0 : β0 = 0.
Often this is not an interesting test because often we are not so interested in the intercept β0, and especially
not in whether it is 0. In this case, the intercept might be interesting because it tells us the price of a
Porsche with no miles. On the other hand, we might not expect a used car, even one with very few miles
to fit the same pattern as a new car. There is probably a loss in value that occurs as soon as a car is
purchased.
In any case, it is clear that the intercept will not be 0; we don’t need a hypothesis test to tell us that.
Indeed, the evidence is incredibly strong.
A confidence interval for the intercept is more interesting since it gives a sort of “starting price” for used
Porches.

confint(porsche.model)

## 2.5 % 97.5 %
## (Intercept) 66.2360 75.9449
## Mileage -0.7054 -0.4734

2. H0 : β1 = 0.
There is strong evidence against this hypothesis as well. This is also not surprising. If β1 = 0, that would
mean that the price of the cars does not depend on the mileage.
A test of β1 = 0 in a simple linear model is often called the model utility test because it is testing
whether the predictor (without any others) is of any use to us or not.

3. H0 : β1 = β10.
Although the output above doesn’t do all of the work for us, we can test other hypotheses as well. (The
notation above is a bit tricky, β10 should be read “β1 null" – it is a hypothesized value for β1.)
For example, let’s test β1 = −1. That the hypothesis that the value drops one dollar per mile driven.
While this example is interesting as an exercise, it is quite rare to have a sensible hypothesized value for
a regression slope parameter that we want to test. It is much more common to ask, as we did above, “is
there a pattern here indicating that the predictor is a useful predictor of the response"?

t <- (-0.5894 - (-1) ) / 0.0566; t

## [1] 7.254

2 * pt( - abs(t), df = 28 )

## [1] 6.749e-08
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This p-value is small enough to cause us to reject this value for β1.

9.6 Connection to Confidence Intervals

There is a natural duality between t-based hypothesis tests and confidence intervals. Since the p-value is
computed using tail probabilities of the t-distribution and confidence level describes the central probability, the
p-value will be below 0.05 exactly when the hypothesized value is not contained in the 95% confidence interval.
(Similar statements can be made for other confidence levels.)

Example 9.6.1. In the preceding example we rejected the null hypothesis that β1 = −1. In fact, we will
reject (at the α = 0.05 level) any hypothesized value not contained in the 95% confidence interval.

t <- (-0.5894 - (- .71)) / 0.0566; t

## [1] 2.131

2 * pt( - abs(t), df = 28)

## [1] 0.04203

But we won’t reject values inside the confidence interval.

t <- (-0.5894 - (- .70)) / 0.0566; t

## [1] 1.954

2 * pt( - abs(t), df = 28 )

## [1] 0.06075

Example 9.6.2. The output below illustrates this duality.

drag.model <- lm(log(force.drag) ~ log(velocity), data = Drag)
coef(summary(drag.model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.474 0.04425 55.91 1.358e-39
## log(velocity) 2.051 0.05366 38.23 4.104e-33

beta1.hat <- 2.051
SE <- 0.05366
t <- ( beta1.hat - 2 ) / SE; t

## [1] 0.9504

2 * pt( - abs(t), df= 40 )
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## [1] 0.3476

confint(drag.model)

## 2.5 % 97.5 %
## (Intercept) 2.384 2.563
## log(velocity) 1.943 2.160

Since the confidence interval for p (i.e., for β1) includes 2, 2 is a plausible value for the power (i.e., consistent
with our data). A 2-sided p-value larger than 0.05 says the same thing at the same level of confidence.
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9.7 Exercises

9.1 An experiment was conducted to see if the number of clicks on a Geiger counter in a 7.5 minute interval
is related to the distance (in m) between a radioactive source and the detection device according to an inverse
square law:

clicks = A+
k

distance2

Answer the questions below using the following output

model <- lm( clicks ~ I(1/(distance^2)), data = Geiger)
summary(model)

##
## Call:
## lm(formula = clicks ~ I(1/(distance^2)), data = Geiger)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.23 -15.82 4.03 10.90 34.09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.3 10.8 10.6 5.5e-06
## I(1/(distance^2)) 31.5 1.0 31.5 1.1e-09
##
## Residual standard error: 22.5 on 8 degrees of freedom
## Multiple R-squared: 0.992,Adjusted R-squared: 0.991
## F-statistic: 990 on 1 and 8 DF, p-value: 1.13e-09

plot(model, w = 1:2)
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a) Are there are any reasons (from what you can tell in the output above) to be concerned about using this
model?

b) What does A tell us about this situation? What would it mean if A were 0? What if A 6= 0?

c) What is the estimate for A? Express this as an estimate ± uncertainty using our rules for numbers of
digits.

d) What is the p-value for the test of the null hypothesis that A = 0? What conclusion do we draw from
this?

e) What does k tell us about this situation? In what situations would k be larger or smaller? What would
it mean if k were 0?

f) Express the estimate for k as an estimate ± uncertainty.

g) What is the p-value for the test of the null hypothesis that k = 0? What conclusion do we draw from
this?

h) A standard radioactive substance has a value of k = 29.812. Might that be the substance we are using
here? Conduct an appropriate hypothesis test to answer this question. Carefully show all four steps.

9.2 A gentleman claims he can distinguish between four vintages of a particular wine. His friends, assuming
he has probably just had too much of each, decide to test him. They prepare one glass of each vintage and
present the gentleman with four unlabeled glasses of wine. What is the probability that the gentleman correctly
identifies all four simply by guessing?

9.3 Redo the drag force analysis after removing observations that appear not to have reached terminal velocity.

If you can describe the rows you want to remove logically, the filter() command works well for this. You can
also remove rows by row number. For example, the following removes rows 1, 3, 5 and 7:

Drag[ - c(1, 3, 5, 7), ]

9.4 Sixteen samples of a certain brand of hydrogenated vegetable oil were tested to determine their melting
point. The mean melting point for the 16 samples was 94.32 degrees and the standard deviation was 1.2 degrees.

a) Conduct a test of the hypothesis µ = 95. Follow the four step procedure.

b) Will 95 be inside or outside of a 95% confidence interval for the melting point? How do you know?

9.5 The Charpy V-notch impact test (https://en.wikipedia.org/wiki/Charpy_impact_test) is a common
way to test the toughness of a material. This test was applied to 42 specimens of a particular alloy at 110
degrees F. The mean amount of transverse lateral expansion was computed to be 73.1 mils with a sample
standard deviation of 5.9 mils.

To be suitable for a particular application, the true amount of expansion must be less than 75 mils. The alloy
will not be used unless their is strong evidence (a p-value below 0.01) that this specification is met.

a) Use a p-value to decide whether this alloy may be used.
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b) Use a confidence interval to decide whether this alloy may be used.

c) Are there advantages to one approach over the other? If you had to present an argument to your boss,
which approach would you use?
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10
More Examples

10.1 Heat Exchanger Example

In this section will discuss several parts of the statistical analysis of a laboratory experiment involving a heat
exchanger.

10.1.1 Apparatus and Measurements

Figure 10.1 shows a diagram illustrating the heat exchanger. Fluids of different temperatures flow in the annulus
(ṁ3) and in the inner tube (ṁ1). The entire apparatus is insulated, so we expect little or no heat to be exchanged
with the surroundings.

Mass flow rates (ṁ) are controlled via valves. Two mass flow rates (ṁ1 and ṁ3) are measured by rotameters.1
Temperatures (T1–T4) are measured by thermocouples.2

Each observation consists of four (4) temperature measurements and two (2) mass flow rate measurements.
Here is an example data set with one set of measurements at each of 6 experimental conditions:

1See http://www.omega.com/prodinfo/rotameters.html for an introduction.
2See http://www.omega.com/techref/themointro.html for an introduction.

m1#
.#

m3#
.#

T1# T2#

T3#

T4#

Figure 10.1: Heat exchanger with statepoints.
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library(fastR2)
HeatX

## trial T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot
## 1 1 14.3 18.6 38.2 33.9 10.0 10
## 2 2 14.1 18.7 35.9 32.8 7.5 10
## 3 3 14.1 19.4 35.9 33.4 5.0 10
## 4 4 14.2 18.4 35.8 31.8 5.0 5
## 5 5 14.1 17.4 35.7 30.9 7.5 5
## 6 6 14.1 16.9 35.8 30.4 10.0 5

gf_point(m.hot ~ m.cold, data = HeatX, main = "Experimental Configurations", size = 3)
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10.1.2 Standardizing Units

The recorded flow rates are in L/min. We will convert them to L/sec and use seconds as our standard unit of
time troughout the analyses.

HeatX <- HeatX %>%
mutate(
m.hot = m.hot / 60,
m.cold = m.cold / 60

)

We could also convert temperatures to degrees Kelvin, but since temperatures only appear as differences between
two temperatures in the expression used here, we can leave them in degrees Celsius.

Table 10.1 contains notation and definitions of important quantities involved in the heat exchanger experiment.

10.1.3 Calculating the heat transfer, Q̇

The amount of heat exchanged between the hot and cold water can be determined from the temperature change
and the mass flow rate as follows:

Q̇1 = ṁ1Cp(T2 − T1) (10.1)
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Table 10.1: Notation for quantities involved in the heat exchanger experiment. Note, some of the physical
“constants” are actually temperature dependant. In these cases, a value has been chosen that reflects the
temperature range (approx. 15–35 degrees C) seen in the data.

Symbol Definition Units Estimate

Q̇ heat transfer rate W

ṁ mass flow rate kg/s

Cp specific heat kJ/(kg·K) 4.18± 0.1

T temperature K

D diameter of inner tube m 0.0143± 0.0004 m

(9/16± 1/64 inches)

L length of the heat exchanger m 1.626± 0.006

(64± 1/4 inches)

A surface area of the inner tube (πDL) [m2]

U heat transfer coefficient W/(m2·K)

h convective heat transfer coefficient (≈ 2U) W/(m2·K)

∆Tlm logarithmic mean temperature difference K

NuD Nusselt number based on D –

ReD Reynolds number based on D –

Pr Prandtl number –

µ dynamic viscosity kg/(m·s) 0.00102± 0.00001

k water thermal conductivity W/(m·K) 0.598± 0.004
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Q̇3 = ṁ3Cp(T4 − T3) (10.2)

We can estimate the values of Q̇ from our data by direct caclulation:

C_p <- 4.18
HeatX2 <- HeatX %>%
mutate(
Q.cold = m.cold * C_p * (T.cold.out - T.cold.in),
Q.hot = m.hot * C_p * (T.hot.out - T.hot.in),
Q.env = Q.cold + Q.hot

)
HeatX2

## trial T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot Q.cold Q.hot Q.env
## 1 1 14.3 18.6 38.2 33.9 0.16667 0.16667 2.996 -2.996 -2.220e-15
## 2 2 14.1 18.7 35.9 32.8 0.12500 0.16667 2.403 -2.160 2.438e-01
## 3 3 14.1 19.4 35.9 33.4 0.08333 0.16667 1.846 -1.742 1.045e-01
## 4 4 14.2 18.4 35.8 31.8 0.08333 0.08333 1.463 -1.393 6.967e-02
## 5 5 14.1 17.4 35.7 30.9 0.12500 0.08333 1.724 -1.672 5.225e-02
## 6 6 14.1 16.9 35.8 30.4 0.16667 0.08333 1.951 -1.881 6.967e-02

10.1.4 Estimating heat exchanged with environment

If no heat were exchanged with the environment and all measurements were without error, then our two estimates
of Q̇ would sum to 0. (Heat lost to one fluid is gained by the other.)

Assuming any loss to (or gain from) the environment is essentially constant for the apparatus over the experi-
mental conditions analysed, we can use our 6 observations to estimate the amount of heat exchanged with the
environment:

df_stats( ~ Q.env, data = HeatX2)

## response min Q1 median Q3 max mean sd n missing
## 1 Q.env -2.22e-15 0.0566 0.06967 0.09579 0.2438 0.08999 0.08274 6 0

gf_point( "" ~ Q.env, data = HeatX2, alpha = .6, cex = 3, jitter.data = TRUE)

0.00 0.05 0.10 0.15 0.20 0.25
Q.env

y
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From this we can compute either a p-value for the hypothesis test that the mean difference in heat change is
0 or create a confidence interval for the mean difference in heat change. The information above is enough to
do this “by hand” using the standard error formula SE = s√

n
and a t-distribution with n − 1 = 5 degrees of

freedom.

SE = 0.08274 /sqrt(6); SE

## [1] 0.03378

0.09003 + c(-1,1) * qt(0.975, df = 5) * SE # 95% CI

## [1] 0.0032 0.1769

t <- (0.08999 - 0) / SE; t

## [1] 2.664

2 * pt( -abs(t), df = 5 ) # p-value

## [1] 0.04466

Or we can let R do all the computations for us:

t.test( ~ Q.env, data = HeatX2)

##
## One Sample t-test
##
## data: Q.env
## t = 2.7, df = 5, p-value = 0.04
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.003159 0.176813
## sample estimates:
## mean of x
## 0.08999

In our example data, there is modest evidence for exchange with the environment, but the estimated amount
of heat gained from the environment is not very precisely estimated. Even at the highest end of the confidence
interval, the heat exchanged with the environment is an order of magnitude smaller than the heat exchanged
within in the apparatus.

Notes:

1. The fact that heat is gained to the system suggests that the cold water was in the outer pipe and hot
water in the inner pipe.

2. This analysis assumes that the amount of heat gained/lost is constant over the different set-ups. From
this small data set, there is not clear evidence of some other relationship between heat exchanged with
the environment and the experimental set up:
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gf_point(Q.env ~ m.cold, data = HeatX2, color = ~ paste("m.hot =", round(m.hot,2)))

0.00

0.05

0.10

0.15

0.20

0.25

0.100 0.125 0.150
m.cold

Q
.e

nv

paste("m.hot =", round(m.hot, 2))

m.hot = 0.08

m.hot = 0.17

3. The t-test and interval are based on the assumption that the distribution of deviations between the
measured environment heat exchange and the actual is normally distributed. The data set is too small to
provide much evidence upon which to judge whether this is a reasonable assumption. The largest value
is quite a bit larger than the rest, but even if we remove that observation, our conclusions don’t change
dramatically:

t.test( ~ Q.env, data = subset(HeatX2, Q.env < max(Q.env)) )

##
## One Sample t-test
##
## data: Q.env
## t = 3.5, df = 4, p-value = 0.03
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.01184 0.10660
## sample estimates:
## mean of x
## 0.05922

Overall, we conclude that there is likely some heat exchanged with the environment, but the amount of heat
exchange with the environment appears to be at most a small factor in this situation.

10.1.5 Estimating heat transfer between hot and cold water, Q̇

Estimating Q̇ with uncertainty is not possible from this data alone since since Q̇ is not measured directly, and
we have only one measurement for each experimental condition (so no way to look at how variable such mea-
surements are without additional information. Furthermore, the design doesn’t provide a method for estimating
the uncertainty in ṁ and T .

If, however, there are external estimates of the uncertainties for temperature and flow rate, and if we can assume
these uncertainties are approximately independent, then we can use propagation of uncertainty to estimate the
uncertainty in our estimates for heat exchanged. Such uncertainties might come from specifications of the
equipment used or be based on past experience of the researcher.
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For example, suppose that the uncertainties in temperature and flow rate measurements are approximately
constant (over the range of temperatures involved): uT , and uṁ. Then the uncertainty in the difference between
two independent temperatures is

√
u2
T + u2

T =
√

2uT , and we can estimate the uncertainty in Q̇ using the delta
method.

• Let Q̇(ṁ,∆T ) = Cpṁ∆T

•
∂Q̇

∂ṁ
= Cp∆T and

∂Q̇

∂∆T
= Cpṁ, so

• uQ̇ ≈ Cp
√

(∆T )2u2
ṁ + ṁ2u2

∆T

If we estimate the uncertainty in measured temperatures to be 1 degree C and the uncertainty in flow rate to
be 0.5 liters per minute (i.e., 0.008 L/sec), then we can compute the uncertainties in the Q̇ values as follows

HeatX2<- HeatX2 %>%
mutate(
u.Q.cold = C_p *sqrt( (T.cold.out - T.cold.in)^2 * (0.5/60)^2 + m.cold^2 * 2),
u.Q.hot = C_p *sqrt( (T.hot.out - T.hot.in)^2 * (0.5/60)^2 + m.hot^2 * 2)

)
HeatX2

## trial T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot Q.cold Q.hot Q.env
## 1 1 14.3 18.6 38.2 33.9 0.16667 0.16667 2.996 -2.996 -2.220e-15
## 2 2 14.1 18.7 35.9 32.8 0.12500 0.16667 2.403 -2.160 2.438e-01
## 3 3 14.1 19.4 35.9 33.4 0.08333 0.16667 1.846 -1.742 1.045e-01
## 4 4 14.2 18.4 35.8 31.8 0.08333 0.08333 1.463 -1.393 6.967e-02
## 5 5 14.1 17.4 35.7 30.9 0.12500 0.08333 1.724 -1.672 5.225e-02
## 6 6 14.1 16.9 35.8 30.4 0.16667 0.08333 1.951 -1.881 6.967e-02
## u.Q.cold u.Q.hot
## 1 0.9966 0.9966
## 2 0.7561 0.9911
## 3 0.5261 0.9891
## 4 0.5139 0.5119
## 5 0.7478 0.5202
## 6 0.9901 0.5273

Note: We are using the fact that u∆T =
√

2uT .

We can also use deltaMethod() in the car package to do this arithmetic for us. In fact, deltaMathod() can
even handle cases where the estimates are not independent. To do it’s job, deltaMethod() requires

• A named vector of estimates,

estimates <- HeatX[1, 2:7] %>% unlist() # unlist() turns the data frame into a vector
estimates

## T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot
## 14.3000 18.6000 38.2000 33.9000 0.1667 0.1667

• An expression for the derived quantity as a quoted string (it will do the derivatives for us!),
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exprforQ <- "(T.cold.out - T.cold.in) * C_p * m.cold"

• A variance-covariance matrix. In the simple case where things are independent, this is just a matrix with
the squared uncertainties on the diagonal and 0 everywhere else.

vc <- diag( c(1,1,1,1,.5/60,.5/60)^2)
vc

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0.000e+00 0.000e+00
## [2,] 0 1 0 0 0.000e+00 0.000e+00
## [3,] 0 0 1 0 0.000e+00 0.000e+00
## [4,] 0 0 0 1 0.000e+00 0.000e+00
## [5,] 0 0 0 0 6.944e-05 0.000e+00
## [6,] 0 0 0 0 0.000e+00 6.944e-05

Let’s see how it compares to the (first row of the) results above:

library(car)
deltaMethod(estimates, exprforQ, vc)

## Estimate SE 2.5 % 97.5 %
## (T.cold.out - T.cold.in) * C_p * m.cold 2.996 0.997 1.042 4.95

The deltaMethod package adds additional interfaces for deltaMethod() to make this even easier.

library(deltaMethod)
deltaMethod(HeatX, exprforQ,
uncertainties = c(T.cold.in = 1.0, T.cold.out = 1.0, m.cold = 0.5 / 60))

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold Estimate SE 2.5 % 97.5 %
## 1 14.3 18.6 0.16667 2.996 0.9966 1.0425 4.949
## 2 14.1 18.7 0.12500 2.403 0.7561 0.9216 3.885
## 3 14.1 19.4 0.08333 1.846 0.5261 0.8151 2.877
## 4 14.2 18.4 0.08333 1.463 0.5139 0.4558 2.470
## 5 14.1 17.4 0.12500 1.724 0.7478 0.2586 3.190
## 6 14.1 16.9 0.16667 1.951 0.9901 0.0102 3.891

Dealing with uncertainties that are not constant

Sometimes the uncertainties of a given variable are different at different values. In that case, we can put the
uncertainties into the data frame. For the current example, this is just extra work, but we include it here to
show how it works.

HeatX3 <- HeatX %>%
mutate(
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u.cold.in = 1, u.cold.out = 1, u.hot.in = 1, u.hot.out = 1,
u.m.cold = 0.5/60, u.m.hot = 0.5/60

)
HeatX3

## trial T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot u.cold.in u.cold.out
## 1 1 14.3 18.6 38.2 33.9 0.16667 0.16667 1 1
## 2 2 14.1 18.7 35.9 32.8 0.12500 0.16667 1 1
## 3 3 14.1 19.4 35.9 33.4 0.08333 0.16667 1 1
## 4 4 14.2 18.4 35.8 31.8 0.08333 0.08333 1 1
## 5 5 14.1 17.4 35.7 30.9 0.12500 0.08333 1 1
## 6 6 14.1 16.9 35.8 30.4 0.16667 0.08333 1 1
## u.hot.in u.hot.out u.m.cold u.m.hot
## 1 1 1 0.008333 0.008333
## 2 1 1 0.008333 0.008333
## 3 1 1 0.008333 0.008333
## 4 1 1 0.008333 0.008333
## 5 1 1 0.008333 0.008333
## 6 1 1 0.008333 0.008333

deltaMethod(HeatX3,
exprforQ,
estimates = c("T.cold.in", "T.cold.out", "m.cold"), # columns with estimates
uncertainties = c("u.cold.in", "u.cold.out", "u.m.cold")) # and uncertainties

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold T.cold.in T.cold.out m.cold Estimate SE 2.5 % 97.5 %
## 1 14.3 18.6 0.16667 14.3 18.6 0.16667 2.996 16.617 -29.57 35.56
## 2 14.1 18.7 0.12500 14.1 18.7 0.12500 2.403 12.471 -22.04 26.85
## 3 14.1 19.4 0.08333 14.1 19.4 0.08333 1.846 8.556 -14.92 18.61
## 4 14.2 18.4 0.08333 14.2 18.4 0.08333 1.463 8.227 -14.66 17.59
## 5 14.1 17.4 0.12500 14.1 17.4 0.12500 1.724 11.828 -21.46 24.91
## 6 14.1 16.9 0.16667 14.1 16.9 0.16667 1.951 15.457 -28.34 32.25

Although our uncertainties are the same in each row, this method allows for uncertainties to be specified
separately for each row of the data.

10.1.6 Does the uncertainty in Cp matter?

In the analysis above, we treated Cp as a constant (with arbitrary precision). But this number is also known
experimentally and has an uncertainty associated with it. Do our results change if we include this uncertainty
in our calculations?

deltaMethod( HeatX %>% mutate(C_p = 4.18), exprforQ, # add in a column for C_p
uncertainties = c(T.cold.in = 1.0, T.cold.out = 1.0, m.cold = 0.5/60, C_p = 0.1))

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold C_p Estimate SE 2.5 % 97.5 %
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## 1 14.3 18.6 0.16667 4.18 2.996 0.9991 1.037409 4.954
## 2 14.1 18.7 0.12500 4.18 2.403 0.7583 0.917292 3.890
## 3 14.1 19.4 0.08333 4.18 1.846 0.5279 0.811450 2.881
## 4 14.2 18.4 0.08333 4.18 1.463 0.5151 0.453474 2.473
## 5 14.1 17.4 0.12500 4.18 1.724 0.7490 0.256333 3.192
## 6 14.1 16.9 0.16667 4.18 1.951 0.9912 0.008047 3.893

Comparing these results to the results above we see that the uncertainty increases, but only by amounts that
are barely visible (a few parts per 1,000 – not enough to affect how we report the uncertainty given our rules
for reporting digits). This has no meaningful impact on our analysis.

We can often simplify propagation of uncertainty calculations by identifying which components of the uncertainty
are driving the size of the overall uncertainty. In this case, the imprecision in the estimated value of Cp is
unimportant. If we want to improve our uncertainty, we must improve our measurements of temperature
and/or flow rate.

10.1.7 Using relative uncertainty

Recall that for products, there is a Pythagorean relationship for relative uncertainties.

uQ̇

Q̇
≈
√

(
uṁ
ṁ

)2 + (
u∆T

∆T
)2 + (

uCp
Cp

)2

This is useful in determining what uncertainties contribute most to the overall uncertainty. For example, using
the values in the first row of the data set.

•
uṁ
ṁ

=
0.5/60

10/60
= 0.05

•
u∆T

∆T
=

√
2

4.5
= 0.314

•
uCp
Cp

=
0.1

4.18
= 0.024

From this we can see that it is the imprecise temperature measurements that are our biggest problem. Even if
we eliminated the other uncertainties, we would still have a relative uncertainty of over 30%. The details vary a
bit from row to row, but the uncertainty in in temperature is our biggest obstacle. In addition to increasing the
precision of our temperature sensors, we could also potentially improve things by designing a heat exchanger
with more dramatic changes in temperature.

Suppose, for example, we could estimate temperature with an uncertainty of 0.1 degrees (ten times better than
we have been assuming). Then our uncertainties for Q̇ would change pretty dramatically.

deltaMethod( HeatX %>% mutate(C_p = 4.18), exprforQ, # add in a column for C_p
uncertainties = c(T.cold.in = 0.1, T.cold.out = 0.1, m.cold = 0.5/60, C_p = 0.1))

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold C_p Estimate SE 2.5 % 97.5 %
## 1 14.3 18.6 0.16667 4.18 2.996 0.1931 2.617 3.374
## 2 14.1 18.7 0.12500 4.18 2.403 0.1856 2.040 2.767
## 3 14.1 19.4 0.08333 4.18 1.846 0.1961 1.462 2.231
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## 4 14.2 18.4 0.08333 4.18 1.463 0.1583 1.153 1.773
## 5 14.1 17.4 0.12500 4.18 1.724 0.1427 1.444 2.004
## 6 14.1 16.9 0.16667 4.18 1.951 0.1463 1.664 2.237

But if we improve the uncertainty in the mass flow rate by a factor of 10, it has only a modest impact on our
uncertainty for Q̇.

deltaMethod( HeatX %>% mutate(C_p = 4.18), exprforQ, # add in a column for C_p
uncertainties = c(T.cold.in = 1.0, T.cold.out = 1.0, m.cold = 0.5/600, C_p = 0.1))

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold C_p Estimate SE 2.5 % 97.5 %
## 1 14.3 18.6 0.16667 4.18 2.996 0.9880 1.05932 4.932
## 2 14.1 18.7 0.12500 4.18 2.403 0.7413 0.95051 3.856
## 3 14.1 19.4 0.08333 4.18 1.846 0.4949 0.87611 2.816
## 4 14.2 18.4 0.08333 4.18 1.463 0.4941 0.49463 2.431
## 5 14.1 17.4 0.12500 4.18 1.724 0.7402 0.27355 3.175
## 6 14.1 16.9 0.16667 4.18 1.951 0.9864 0.01738 3.884

10.1.8 Estimating the heat transfer coefficient, U

Next, we estimate a heat transfer coefficient (U) for both streams,

U =
Q̇

A∆Tlm
, (10.3)

where

∆Tlm ≡
(T1 − T4)− (T2 − T3)

log
(
T1−T4

T2−T3

) . (10.4)

We can apply the same ideas to estimate the uncertainty in U . This time, working it out by hand would be
considerably more tedious because of the number of variables involved and the form of the expression to be
differentiated. Fortunately, R is happy to take care of those details if we just specify the information needed.

exprforU <- paste("C_p * m.cold * (T.cold.out - T.cold.in) /",
"( pi * D * L * ((T.cold.out - T.hot.in) - (T.cold.in - T.hot.out)) /",
" log ( (T.cold.out - T.hot.in) / (T.cold.in - T.hot.out) ) )")

HeatX4 <- HeatX %>%
mutate(D = 0.0143, L = 1.626, C_p = 4.18)

HeatX4

## trial T.cold.in T.cold.out T.hot.in T.hot.out m.cold m.hot D L C_p
## 1 1 14.3 18.6 38.2 33.9 0.16667 0.16667 0.0143 1.626 4.18
## 2 2 14.1 18.7 35.9 32.8 0.12500 0.16667 0.0143 1.626 4.18
## 3 3 14.1 19.4 35.9 33.4 0.08333 0.16667 0.0143 1.626 4.18
## 4 4 14.2 18.4 35.8 31.8 0.08333 0.08333 0.0143 1.626 4.18
## 5 5 14.1 17.4 35.7 30.9 0.12500 0.08333 0.0143 1.626 4.18
## 6 6 14.1 16.9 35.8 30.4 0.16667 0.08333 0.0143 1.626 4.18

Math 241 : Pruim Last Modified: January 23, 2021



242 10. More Examples

deltaMethod(HeatX4, exprforU,
uncertainties = c(

T.cold.in = 1.0, T.cold.out = 1.0, m.cold = 0.5/60,
T.hot.in = 1.0, T.hot.out = 1.0, m.hot = 0.5/60,
C_p = 0.1, D = 0.0004, L = 0.0006),

constants = list(pi = pi)
)

## Converting uncertainties to a covariance matrix assuming independence ...

## T.cold.in T.cold.out m.cold T.hot.in T.hot.out m.hot C_p D L Estimate
## 1 14.3 18.6 0.16667 38.2 33.9 0.16667 4.18 0.0143 1.626 -2.563
## 2 14.1 18.7 0.12500 35.9 32.8 0.16667 4.18 0.0143 1.626 -1.834
## 3 14.1 19.4 0.08333 35.9 33.4 0.16667 4.18 0.0143 1.626 -1.415
## 4 14.2 18.4 0.08333 35.8 31.8 0.08333 4.18 0.0143 1.626 -1.144
## 5 14.1 17.4 0.12500 35.7 30.9 0.08333 4.18 0.0143 1.626 -1.346
## 6 14.1 16.9 0.16667 35.8 30.4 0.08333 4.18 0.0143 1.626 -1.520
## SE 2.5 % 97.5 %
## 1 2.650e+14 -5.194e+14 5.194e+14
## 2 5.918e-01 -2.994e+00 -6.742e-01
## 3 4.169e-01 -2.232e+00 -5.978e-01
## 4 4.096e-01 -1.947e+00 -3.416e-01
## 5 5.893e-01 -2.501e+00 -1.908e-01
## 6 7.754e-01 -3.040e+00 -3.181e-04

Note the use of the constants argument here to specify the value of pi. We could also have specified Cp this
way if we decided to ignore the uncertainty in that value. But since it is no harder to include that uncertainty,
we included it.

10.1.9 Estimating the Nusselt number correlation, a

Finally, we can estimate the parameter a in a Nusselt number correlation for turbulent flow (ReD > 2300):

a =
NuD

Re0.8
D Pr1/3

, (10.5)

where

NuD =
hD

k
≈ 2UD

k
, (10.6)

ReD =
4ṁ

πDµ
, (10.7)

and

Pr =
µCp
k
. (10.8)
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The uncertainty in the estimates for a can be estimated in a similar manner. For that purpose, we assume that
the exponents on ReD and Pr (0.8 and 1/3, respectively) are constant. The values of Cp, k, and µ are given in
Table 10.1.

To complete our uncertainty calculation we must

1. Create an expression for the quantity we are interested in (as a quoted string).

2. Create a data frame that has all of the components of this expression that have uncertainties.

3. Create a named vector of uncertainties. The names should correspond to the variables names in the
data frame, the values are the uncertainties. (Alternatively, the uncertainties can be put inside the data
frame and the arguments estimtates and uncertainties can be used to specify which columns are the
estimates and which are the corresponding uncertainties.)

4. Create a list that contains the value of any constants (or values for which we are ignoring that there is
uncertainty because the uncertainty is so small that it doesn’t affect the analysis).

This is left as an exercise for you.

10.2 Standard Errors in fitdistr() output

We had not yet learned about uncertainty and standard errors when we learned about fitdistr(), but the
output from the function includes an estimated standard error.

library(fastR2)
fitdistr(Jordan8687$points, "normal")

## mean sd
## 37.0854 9.8640
## ( 1.0893) ( 0.7702)

The parenthesized numbers are the estimated standard errors associated with each parameter estimate. In this
case, it is easy to compute the standard error for the mean ourselves using SE = s/

√
n.

sd( ~ points, data = Jordan8687) / sqrt(82)

## [1] 1.096

10.3 R2

Note: the methods in this section assume a linear model with an intercept term.

Recall that linear models are fit by minimizing the sum of the squares of the residuals:3

RSS = SSE =

n∑
i=1

(yi − ŷ)2

3RSS stands for Residual Sum of Squares; SSE stands for Error Sum of Squares.
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This expression reminds us of4

SST =

n∑
i=1

(yi − y)2 ,

the numerator of the variance of y. SST is a measure of the total variation in the response variable.

A little algebra shows that5

SSM = SST − SSE =

n∑
i=1

(ŷ − y)2 ,

We can now define R2 by

R2 =
SSM

SST
=

SSM

SSM + SSE
= proportion of variability in the response explained by the model.

R2 is always between 0 and 1 and is reported in the summary output for linear models. It is the square of the
correlation coefficient that we saw earlier.

summary(lm(sat ~ expend, data = SAT)) # how does the average SAT score depend on money spent?

##
## Call:
## lm(formula = sat ~ expend, data = SAT)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145.07 -46.82 4.09 40.03 128.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1089.29 44.39 24.54 <2e-16
## expend -20.89 7.33 -2.85 0.0064
##
## Residual standard error: 69.9 on 48 degrees of freedom
## Multiple R-squared: 0.145,Adjusted R-squared: 0.127
## F-statistic: 8.13 on 1 and 48 DF, p-value: 0.00641

Notice that R2 < 15% and that the coefficient on expend is negative – indicating that spending more is associated
with worse scores on the SAT.

One reason for this is that in some states most college bound students take the SAT, but in other states, the
ACT is more common so the pool of students taking the SAT is stronger. If we add frac – the fraction of
students in a given state who took the SAT.

summary(lm(sat ~ expend + frac, data = SAT))

##
## Call:
## lm(formula = sat ~ expend + frac, data = SAT)
##
## Residuals:
## Min 1Q Median 3Q Max
## -88.40 -22.88 1.97 19.14 68.75

4SST stands for Total Sum of Squares.
5SSM stands for Model Sum of Squares.
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 993.832 21.833 45.52 <2e-16
## expend 12.287 4.224 2.91 0.0055
## frac -2.851 0.215 -13.25 <2e-16
##
## Residual standard error: 32.5 on 47 degrees of freedom
## Multiple R-squared: 0.819,Adjusted R-squared: 0.812
## F-statistic: 107 on 2 and 47 DF, p-value: <2e-16

Notice how much larger R2 is now, and that the sign of the coefficient on expend is not positive – as we would
have expected.

It is important to note that adding in the additional variable frac gives a very different impression of the effect
of expend on sat. Most of our examples have dealt with one response to one predictor, but in many situations,
this is too simplistic and the inclusion of multiple predictors in the model is required to understand their impact
on the response.
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10.4 Exercises

10.1 Give an estimate with uncertainty for the Nusselt number correlation using the data in HeatX used in
this chapter.
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median, 21
min, 21
mosaic, 11, 12, 15, 21, 28, 33, 36, 69, 207
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mpg, 33
mplot(), 162
mtable(), 37
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nls(), 194, 200, 201
nrow, 15
oldfaith, 33
pbinom(), 210
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pheno, 169
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prop.test(), 132
qbinom(), 210
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rbinom(), 210
resample(), 50, 61, 137
resid(), 155, 161
rflip(), 49, 61, 207
sample(), 61
sd(), 41, 46
sd, 21
sqrt(), 9
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summary(), 164
sum, 61
t.test(), 119, 127, 128, 132
table(), 35–37
tally(), 35, 36, 38
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var(), 41, 46
var, 21
xpnorm(), 84
xtabs(), 37

ACT, 203

Beta distribution, 85
bulge rule, 187

cards, 58
cdf, see cumulative distribution function
Central Limit Theorem, 111
coefficient of determinism, 190
conditional probability, 56
confidence level, 120
correlation coefficient, 155
coverage rate, 120
critical value, 120
cumulative distribution function, 71

data frame, 12

Delta Method, 136
density, 66
density function, 68
dice, 58, 93

exponential distribution, 79

Fisher, R. A., 206

Gamma distribution, 80
grade point average, 203

heteroskedasticity, 181
homoskedasticity, 181

independent events, 60

kernel, 70

ladder of re-expression, 187

medical testing, 59

Newton’s Law of Cooling, 199
normal distribution, 82

observation unit, 12

parameter, 76
pdf, see probability density function
physics, 188, 191, 202–204
population, 205
probability density function, 68

quantile-quantile plot, 96

relative uncertainty, 140
robustness, 122

sample, 205
soap, 192

terminal velocity, 203
transformation

of data, 180, 202
triangle distribution, 76
triangular distribution, see triangle distribution
Tukey bulge, 187, 202
Tukey, J., 187

uncertainty, 133
uniform distribution, 78

variable, 12

Weibull distribution, 80
wine

gentleman tasting, 228
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