Alternatives to prop.test
and binom.test
.
Details
wald.ci
produces Wald confidence intervals. wilson.ci
produces Wilson confidence intervals (also called ``plus-4'' confidence
intervals) which are Wald intervals computed from data formed by adding 2
successes and 2 failures. The Wilson confidence intervals have better
coverage rates for small samples.
References
A. Agresti and B. A. Coull, Approximate is better then `exact' for interval estimation of binomial proportions, American Statistician 52 (1998), 119--126.
Examples
prop.test(12,30)
#>
#> 1-sample proportions test with continuity correction
#>
#> data: 12 out of 30
#> X-squared = 0.83333, df = 1, p-value = 0.3613
#> alternative hypothesis: true p is not equal to 0.5
#> 95 percent confidence interval:
#> 0.2322334 0.5924978
#> sample estimates:
#> p
#> 0.4
#>
prop.test(12,30, correct=FALSE)
#>
#> 1-sample proportions test without continuity correction
#>
#> data: 12 out of 30
#> X-squared = 1.2, df = 1, p-value = 0.2733
#> alternative hypothesis: true p is not equal to 0.5
#> 95 percent confidence interval:
#> 0.2459063 0.5767964
#> sample estimates:
#> p
#> 0.4
#>
wald.ci(12,30)
#> [1] 0.2246955 0.5753045
#> attr(,"conf.level")
#> [1] 0.95
wilson.ci(12,30)
#> [1] 0.2463368 0.5771926
#> attr(,"conf.level")
#> [1] 0.95
wald.ci(12+2,30+4)
#> [1] 0.2463368 0.5771926
#> attr(,"conf.level")
#> [1] 0.95